
Mosig: ”From Basic Machine Learning models to Advanced Kernel

Learning”

Final exam

Pierre Gaillard, Michael Arbel and Julien Mairal

General instructions. No material (slides, book, laptop, cell phone, ...) is allowed for the final written
exam. The exercises are tentatively ordered from easiest to most difficult ones.

Exercice 1. Basic machine learning models

Regression. We want to predict Yi ∈ R as a function of Xi ∈ R. We consider the following models:

(a) Linear regression (with linear features)
(b) 2-nd order polynomial regression
(c) 10-th order polynomial regression

(d) Kernel ridge regression with a Gaussian kernel
(e) k-nearest neighbor regression

We consider the following regression problems.
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Answer each of the following questions with no justification.

1. If Y ∈ Rn is the output vector and X ∈ Rn is the input vector. Write the expression of the estimator
for linear regression (with linear feature map).

Solution In one dimension, the estimator of linear regression solves the following optimization
problem:

β̂n ∈ argmin
β∈R2

∥∥Y − β0 +Xβ1

∥∥2.
Solving the gradients yields: β̂0 = Ȳ where Ȳ = 1

n

∑n
i=1 Yi and β̂1 = (X⊤X)−1X⊤(Y − Ȳ ). Another

solution is to add the intercept in the input matrix, writing X̃ :=
[
1, X

]
the (n× 2) matrix where the

first column is (1, . . . , 1)⊤ ∈ Rn, we have β̂n = (X̃⊤X̃)−1X̃⊤Y . ■

2. What are the time and space complexities

• in n and d of d-th order polynomial regression,
• in n of kernel ridge regression,
• in n and k of k-nearest neighbor regression?

Solution Polynomial regression for one-dimensional inputs needs to compute (Z⊤Z)−1Z⊤X where
Z = [1, X,X2, . . . , Xd] is an (n × (d + 1)) matrix. The matrix multiplication Z⊤Z costs O(nd2) and
the matrix inversion of the (d+ 1)× (d+ 1) matrix (Z⊤Z)−1 costs O(d3) time.
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Kernel regression needs to compute α = (Knn +nλIn)
−1Y ∈ Rn, where Knn =

[
k(xi, xj)

]
1≤i,j≤n

. For

a new input x ∈ R, it then predicts f̂λ(x) =
∑n

i=1 k(xi, x)αi. The algorithm thus needs to inverse the
n× n matrix Knn + nλIn which requires O(n3) time and O(n2) space.

The k-NN regression does not need any training. The time complexity of the training part is thus O(1),
while for space it only needs to store all points which requires O(n). However, a naive implementation
of k-NN (there are optimized versions using trees) requires O(nk) runtime to make a prediction.

Regression model Time complexity Space complexity

Polynomial regression O(d3 + d2n) O(d2 + dn)
Kernel ridge regression O(n3) O(n2)
k-nearest neighbor O(nk) (for prediction) O(n)

■

3. What are the hyper-parameters of kernel ridge regression and k-nearest neighbors?

Solution Kernel ridge regression with a Gaussian kernel requires two hyper-parameters: the regu-
larization parameter λ > 0 and the bandwidth of the Gaussian kernel: σ > 0.

k-nearest neighbor only needs the number of neighbors k ≥ 1. ■

4. For each problem, what would be the good model(s) to choose? (no justification)

Solution Several solutions are possible for each problem. We only choose here the ones that seem to
be the most appropriate (i.e., the simplest one). Some methods such as kernel ridge regression would
need however to be regularized enough.

Problem 1 2 3 4 5
Best models among (a)-(e) a b No method will per-

form well. The
best would be (a) to
avoid over-fitting.

e c, d

■

5. What models would lead to over-fitting in Problem 1.

Solution In problem 1, the relation between X and Y seem to be linear. Models c, d, and e might
lead to over-fitting (though there seems to be sufficiently many points in the dataset) if they are not
regularized enough. ■

6. Provide one solution to deal with over-fitting.

Solution A solution is to use cross-validation to calibrate the hyper-parameters to regularize enough
the methods (such as the regularization parameter λ in KRR or the bandwidth σ). Cross-validation
can also be used to select the best model among (a-e). ■

Classification. We aim at predicting Yi ∈ {0, 1} as a function of Xi ∈ R2 (with the notation ◦ = 0 and
× = 1). We consider the following models:

(a) Linear Logistic regression
(b) Multi-Layer Perceptron
(c) Logistic regression with 2-nd order polynomials

(d) Logistic regression with 10-th order polynomi-
als

(e) k-nearest neighbor classification
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We consider the following classification problems.
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An-
swer each of the following questions with no justification.

7. Write the optimization problem that logistic regression is solving. How is it solved?

Solution Logistic regression solves the following optimization problem:

min
β0,β∈R2

n∑
i=1

ℓ(β0 + β⊤Xi, Yi)

where β0 ∈ R is the intercept (which may be included into the inputs) and ℓ(ŷ, y) = y log
(
1 + e−ŷ

)
+

(1 − y) log
(
1 + eŷ

)
is the logistic loss. Contrary to least square regression, there is no closed form

solution. One needs thus to use iterative convex optimization algorithms such as Newton’s method or
gradient descent. ■

8. Write the update rule of a single unit of a Multilayer Perceptron. What activation function would you
choose/not choose for these problems?

9. For each problem, what would be the good model(s) to choose? (no justification)

Solution Again several solutions are possible for each problem. We only choose here the ones that
seem to be the most appropriate (i.e., the simplest one).

Problem 1 2 3 4 5
Best models among (a)-(e) a,b,e c No model will be

good. Choose the
simplest to avoid
over-fitting: a,b,e

d, e a

■

Exercice 2. Kernel k-means
In order to cluster a set of vectors x1, . . . , xn ∈ Rp into K groups, we consider the minimization of:

C(z, µ) =

n∑
i=1

∥xi − µzi ∥2

over the cluster assignment variable zi (taking values in 1, . . . ,K for all i = 1, . . . , n) and over the cluster
means µi ∈ Rp, i = 1, . . . ,K.

1. Starting from an initial assignment z0, we can try to minimize C(z, µ) by iterating:

µi = argmin
µ

C(zi, µ) , zi+1 = argmin
z

C(z, µi) .

Explicit how both minimization can be carried out (note: this method is called k-means).
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2. Propose a similar iterative algorithm to perform k-means in the RKHS H of a p.d. kernel K over Rp,
i.e., to minimize:

CK(z, µ) =

n∑
i=1

∥Φ(xi)− µzi ∥2 ,

where Φ : Rp → H satisfies Φ(x)⊤Φ(x′) = K(x, x′).

3. Let Z be the n×K assignment matrix with values Zij = 1 if xi is assigned to cluster j, 0 otherwise.
Let Nj =

∑n
i=1 Zij be the number of points assigned to cluster j, and L be the K × K diagonal

matrix with entries Lii = 1/Ni. Show that minimizing CK(z, µ) is equivalent to maximizing over the
assignment matrix Z the trace of L1/2Z⊤KZL1/2.

4. Let H = ZL1/2. What can we say about H⊤H? Do you see a connection between kernel k-means and
kernel PCA? Propose an algorithm to estimate Z from the solution of kernel PCA.

Exercice 3. RKHS of a inner product of features
Let X be a set and F be a Hilbert space. Let Ψ : X → F , and K : X × X → R be:

∀x, x′ ∈ X , K(x, x′) = ⟨Ψ(x),Ψ(x′)⟩F .

1. Show that K is a positive definite kernel on X .

2. Consider the set H defined as follow:

H = {f : X → R | (∃w ∈ F)(∀x ∈ X ) f(x) = ⟨w,Ψ(x)⟩F} (1)

and define the map T as follows:

T : F → H (2)

w 7→ fw := ⟨w,Ψ(.)⟩F . (3)

Show that T has a closed null-space (i.e. if a sequence wn in F satisfying T (wn) = 0 converges to an
element w ∈ F and then T (w) = 0).

3. Show that there exists a closed sub-space V of F on which the restriction of T (denoted TV ) is an
isomorphism between V and H. (Hint: recall that any closed sub-space of a Hilbert space admits a
unique orthogonal supplement.)

4. Consider the following bilinear form defined on H:

⟨f, g⟩H = ⟨T−1
V (f), T−1

V (g)⟩F (4)

Show that ⟨f, g⟩H is an inner-product on H.

5. Deduce that H is Hilbert space endowed with inner-product ⟨., .⟩H.

6. Show that H is an RKHS with kernel K.

7. Show that for any f ∈ H, the following equality holds:

∥f∥H = inf
w∈F

f=T (w)

∥w∥F . (5)
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8. Consider the space:

H′ := {f : X → R | f(x) = ⟨w,Ψ(x)⟩H, s.t. w ∈ Span(Im(Ψ))}. (6)

where Im(Ψ) stands for the image set of X by Ψ and for any subset A of F , Span(A) denote the
closure in F of the vector space obtained by finite linear combination of elements in A. Show that H′

is equal to H.
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