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Exercice 1. Rademacher complexity

Let P be some unknown distribution on X×Y , with Y = {−1, 1}. Assume we
are given a dataset Sn := (Xi, Yi)1≤i≤n of i.i.d. points in X × Y distributed
according to some probability P. Let F be a set of real-valued functions
defined on X . Let σ1, . . . , σn be n i.i.d. Rademacher variables, i.e. σi ∈
{−1, 1} with P(σi = 1) = 1

2
. We define the Rademacher complexity Rn(F)

of F to be:

Rn(F) =
2

n
EX,σ

[

sup
f∈F

n∑

i=1

σif(Xi)

]

. (1)

Remark: The above definition is slightly different than the one in the lecture
slides as it does not take the absolute value. Both definitions are considered
in the literature, but this one is easier to deal with.

Introduce the set G := {g(x, y) := ϕ(yf(x))|f ∈ G} for some real-valued
function ϕ that is L-Lipschitz, i.e. ϕ(t)− ϕ(s) ≤ L|t− s|. For simplicity we
write z = (x, y) for any X × Y and define Zi = (Xi, Yi).

1. Define Rn(G) =
2
n
E[supf∈F

∑n

i=1 σiϕ(Yif(Xi))]. Prove that:

Rn(G) ≤ LRn(F).

2. Define the population risk Rϕ(f) and empirical risk Rn
ϕ(f,Sn) of a

function f to be:

Rϕ(f) = E(x,y)∼P [ϕ(yf(x))] , Rn
ϕ(f, Sn) =

1

n

n∑

i=1

ϕ(Yif(Xi)). (2)
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Prove that:

E

[

sup
f∈F

Rϕ(f)−Rn
ϕ(f, Sn)

]

≤ 2LRn(F).

and that:

E

[

sup
f∈F

Rn
ϕ(f, Sn)−Rϕ(f)

]

≤ 2LRn(F).

3. Consider f̂n to be a minimizer of the empirical risk Rn
ϕ(f̂n,Sn) =

minf∈F R
n
ϕ(f,Sn) and denote by R⋆

ϕ the optimal population risk over
the class of measurable functions. Show that:

ESn
[Rϕ(f̂n)]− R⋆

ϕ ≤ 4LRn(F) + inf
f∈F

Rϕ(f)− R⋆
ϕ.

Proof. • Proof of (1).
Consider a set of maps αi(f) and βi(f) indexed by 1 ≤ i ≤ n defined as:

αi(f) = ϕ(Yif(Xi)), βi(f) = Lf(Xi). (3)

Introduce the vectors maps Ψj(f) for 0 ≤ j ≤ n with: Ψ0(f) := (α1(f), ..., αn(f))
and Ψn(f) := (β1(f), ..., βn(f)), and for 0 < j < n:

Ψj(f) := (β1(f), ..., βj(f), αj+1(f), ...., αn(f)).

Finally, for some vector map Ψ = (ψ1, ..., ψn), where ϕi can be either αi or
βi, we introduce the notation R(Ψj(F)):

R(Ψ(F)) :=
2

n
E[sup

f∈F

n∑

i=1

ψi(f)].

With this notation and if, we get

R(Ψ0(F)) = Rn(G), R(Ψn(F)) = LRn(F) (4)

We will prove that for any 0 ≤ j < n:

R(Ψj(F)) ≤ R(Ψj+1(F)).

2



The above inequality means that we can always ”flip” a component αj(f) to
βj(f) without decreasing the Rademacher complexity. It allows to directly
conclude that R(Ψ0(F)) ≤ R(Ψn(F)) which is the desired result. Without
loss of generality, we only need to prove the inequality for j = 0, as the proof
can be applied similarly to j > 0.

R(Ψ0(F)) =
2

n
E

[

sup
f∈F

n∑

i=1

σiαi(f)

]

=
2

n
E

[

sup
f∈F

σ1α1(f) +

n∑

i=2

σiαi(f)

]

=
1

n
E

[

sup
f∈F

(

α1(f) +
n∑

i=2

σiαi(f)

)

+ sup
f∈F

(

−α1(f) +
n∑

i=2

σiαi(f)

)]

=
1

n
E

[

sup
f,f ′∈F

(

ϕ(Y1f(X1))− ϕ(Y1f
′(X1)) +

n∑

i=2

σi(αi(f) + αi(f
′))

)]

≤
1

n
E

[

sup
f,f ′∈F

(

L|f(X1)− f ′(X1)|+
n∑

i=2

σi(αi(f) + αi(f
′))

)]

=
1

n
E

[

sup
f,f ′∈F

(

Lf(X1)− Lf ′(X1)|+

n∑

i=2

σi(αi(f) + αi(f
′))

)]

=
1

n
E

[

sup
f,f ′∈F

(

β1(f) +

n∑

i=2

σiαi(f)

)

+

(

−β1(f
′) +

n∑

i=2

σiαi(f
′)

)]

=
1

n
E

[

sup
f∈F

(

β1(f) +

n∑

i=2

σiαi(f)

)

+ sup
f ′∈F

(

−β1(f
′) +

n∑

i=2

σiαi(f
′)

)]

=
2

n
E

[

sup
f∈F

(

σ1β1(f) +
n∑

i=2

σiαi(f)

)]

= R(Ψ1(F))

We are able to drop the absolute value (in the step after the inequality),
since the roles of f and f ′ are symmetric and the supremum is achieved
when f(X1)− f ′(X1) is positive. This completes the proof.

• Proof of (2).

Consider an copy S ′
n = (X

′

i , Y
′

i )1≤i≤n of the data Sn that is independent of
it. It is easy to see that Rϕ(f) = ES′

n

[Rn
ϕ(f, S

′
n)]
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ESn

[

sup
f∈F

Rϕ(f)−Rn
ϕ(f, Sn)

]

= ESn

[

sup
f∈F

ES′

n

Rn
ϕ(f, S

′
n)− Rn

ϕ(f, Sn)

]

≤ ESn,S′

n

[

sup
f∈F

Rn
ϕ(f, S

′
n)−Rn

ϕ(f, Sn)

]

≤
1

n
ESn,S′

n

[

sup
f∈F

n∑

i=1

ϕ(Y
′

i f(X
′

i))− ϕ(Yif(Xi))

]

=
1

n
ESn,S′

n
,σ

[

sup
f∈F

n∑

i=1

σi

(

ϕ(Y
′

i f(X
′

i))− ϕ(Yif(Xi))
)
]

≤ 2Rn(G) ≤ 2LRn(F).

The same proof holds for the second inequality.

• Proof of (3).

Assume for simplicity that f ⋆ is a minimizer of the population risk Rϕ(f).

Rϕ(f̂n)− Rϕ(f
⋆) =

(

Rϕ(f̂n)− Rn
ϕ(f̂n,Sn)

)

+
(

Rn
ϕ(f̂n,Sn)− Rn

ϕ(f
⋆,Sn)

)

︸ ︷︷ ︸

≤0

+
(
Rn

ϕ(f
⋆,Sn)−Rϕ(f

⋆)
)

≤
(

Rϕ(f̂n)− Rn
ϕ(f̂n,Sn)

)

+
(
Rn

ϕ(f
⋆,Sn)−Rϕ(f

⋆)
)

≤ sup
f∈F

(
Rϕ(f)− Rn

ϕ(f,Sn)
)
+ sup

f∈F

(
Rn

ϕ(f,Sn)− Rϕ(f)
)

Taking the expectation w.r.t. data we get:

ESn
[Rϕ(f̂n)]− Rϕ(f

⋆) ≤ ESn

[

sup
f∈F

(
Rϕ(f)− Rn

ϕ(f,Sn)
)
]

+ ESn

[

sup
f∈F

(
Rn

ϕ(f,Sn)−Rϕ(f)
)
]

≤ 2LRn(F) + 2LRn(F) = 4LRn(F).

Recalling that Rϕ(f
⋆)= inff∈F Rϕ(f), we get the desired result.
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