
2024-25 M. Arbel, P. Gaillard, J. Mairal

From Basic Machine Learning models to
Advanced Kernel Learning

Home Assignment 1

This homework should be uploaded by November 22, 2024 at 23:59pm as a pdf report together with a code
file (.py or .ipynb) on the website

http://pierre.gaillard.me/teaching/kernel_mosig_2024.php

The password to upload is kernel2024. The results and the figures must be included into the pdf report but not
the code. Basic python librairies for linear algebra or sampling may be used but not already fully implemented
algorithms for SGD, linear regression, logistic regression or KNN.

1 Regression

In this part, we have a dataset {(xi, yi)}1≤i≤n of input-output pairs in R× R. For the simulations, we have

yi = f(xi) + εi, where f : x 7→ exp(3x) and εi
i.i.d.∼ N (0, 1) .

We aim at estimating the unknown function f .

1. Simulate and plot the data with n = 40. Separate the data in two sets of equal size ntrain = ntest = 20: training
and testing sets.

2. Give the equation of the coefficient θ̂ntrain obtained from linear regression (with features φ(x) = (1, x)) that
minimizes the empirial risk with square loss over functions fθ(x) : x 7→ ⟨θ, φ(x)⟩ on training data only. Give
the value of θ̂ntrain and plot the obtained function with the data.

3. Estimate the functions obtained with polynomial features φ(x) = (1, x, x2, . . . , xk) for k = 1, . . . , 9 and plot
them.

4. Plot the evolution of the train and test errors as a function of the polynom degree. Comment.

2 Classification

In this part, the inputs xi are in R2 and the outputs yi in {−1, 1}. We simulate the data as a Gaussian mixture:

yi
i.i.d.∼ B(1/2) and xi

i.i.d.∼ N (µyi ,Σyi)

with

µ1 = (1, 1) µ−1 = (−1, 3) Σ1 =

(
2 1
1 1

)
Σ−1 =

(
1 −1/2

−1/2 5/4

)
.

We aim at predicting the probability of a new input x to belong to class 1.
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5. Simulate and plot the data with n = 200. Separate the data in two sets of equal size ntrain = ntest = 100:
training and testing sets.

KNN and Cross-validation

6. Implement the function kNN that takes as input the number of neighbors k, the training and testing sets and
returns the average number of prediction errors on the testing and training sets. Plot theses errors as a function
of k = 1, . . . , 20. What seems to be the best value for k?

7. Cross-validation. Separate the training set in 5 groups D1, . . . , D5 of size 20. For each value of k, run 5 times
the function kNN, using for i = 1, . . . , 5, Di as testing set and ∪j ̸=iDj as training set and compute the averaged
test error obtained. Plot this error as a function of k. What is the best value for k?

8. Plot the heatmap showing the probability of being class 1 predicted by kNN for the above value of k as a
function of the inputs.

Logistic Regression

9. Implement the logistic regression estimator θ̂ntrain using SGD (that you implement from scratch choosing a
step-size and a number of iterations that seem reasonable) to minimize the empirical risk

R(θ) =
1

n

ntrain∑
i=1

ℓ
(
fθ(xi), yi

)
where fθ : x 7→ ⟨θ, φ(x)⟩ and φ : x ∈ R2 7→ (1, x1, x2) ∈ R3

where ℓ is the logistic loss for outputs in {−1, 1}. Write the equation of a gradient update performed by SGD
for a step size η > 0 (by writing explicitely the expression of the gradient here). Plot the obtained classification
function fθ̂ntrain

with the data. Comment.

10. Estimate the functions fθ̂ntrain
obtained with polynomial features φ(x) =

(
{xa1xb2}0≤a+b≤k

)
for k = 1, . . . , 5 and

plot them.

11. Plot the evolution of the train and test errors as a function of the polynom degree using logistic loss and 0-1
loss. What is the best degree? What should it be in theory?

12. For an estimator θ̂ntrain and a new input x, what is the predicted probability of this point of being class 1?
Plot the heatmap showing these predicted probabilities for the value of k = 2 as a function of the inputs.
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