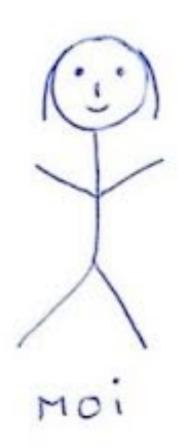
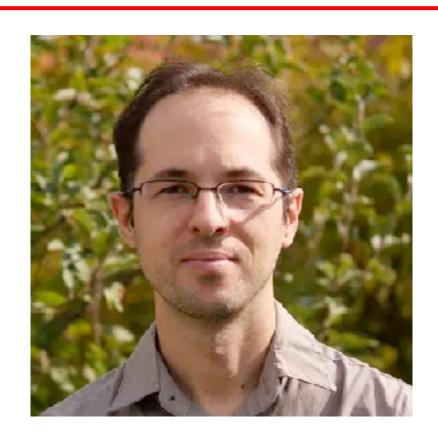
Basic Machine Learning Modelsto Advanced Kernel Learning



Scott Pesme Post-doc Inria Grenoble

Michaël Arbel Researcher Inria Grenoble

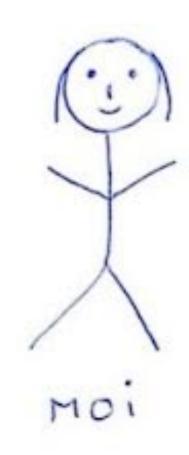


Julien Mairal Researcher Inria Grenoble

We work on the "theoretical aspects" of machine learning

= Institut National de Recherche en Informatique et en Automatique

Course structure



Scott Pesme Post-doc Inria Grenoble

Michaël Arbel

Julien Mairal Chercheur Inria Grenoble Chercheur Inria Grenoble

Basic Machine Learning Models

Advanced Kernel Learning

2 x (~1h15 lecture) + 15 minutes break

Final grade: 50% exam + 50% homework

What to expect?

- Understanding of basic ML methods:
 - Linear regression, linear classification, unsupervised learning, neural networks
 - Optimisation methods (gradient descent)
- A deeper dive into kernel methods

You will mostly need pre-requisites from linear algebra!

ntroduction

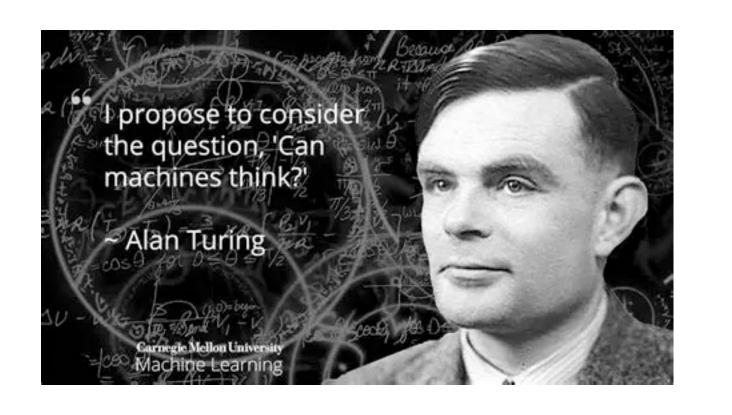
A bit of Al history: the idea of thinking machines is not new!

https://www.youtube.com/watch?v=aygSMgK3BEM

What's going to happen to us if machines can think? Can they?

I don't really know, but you come back in 4 or 5 years I'll probably say "Sure they can think".

A bit of Al history



Dartmouth Conference Coined the term "Artificial intelligence"

Origins

"Birth of AI"

1940s - 1950s

1956

1960s - 1970s 1990s-2000s

Al Winters

Deep learning breakthrough

AlexNet (2012), AlphaGo (2016) LLMs

2010s - 2020s

Theoretical foundations

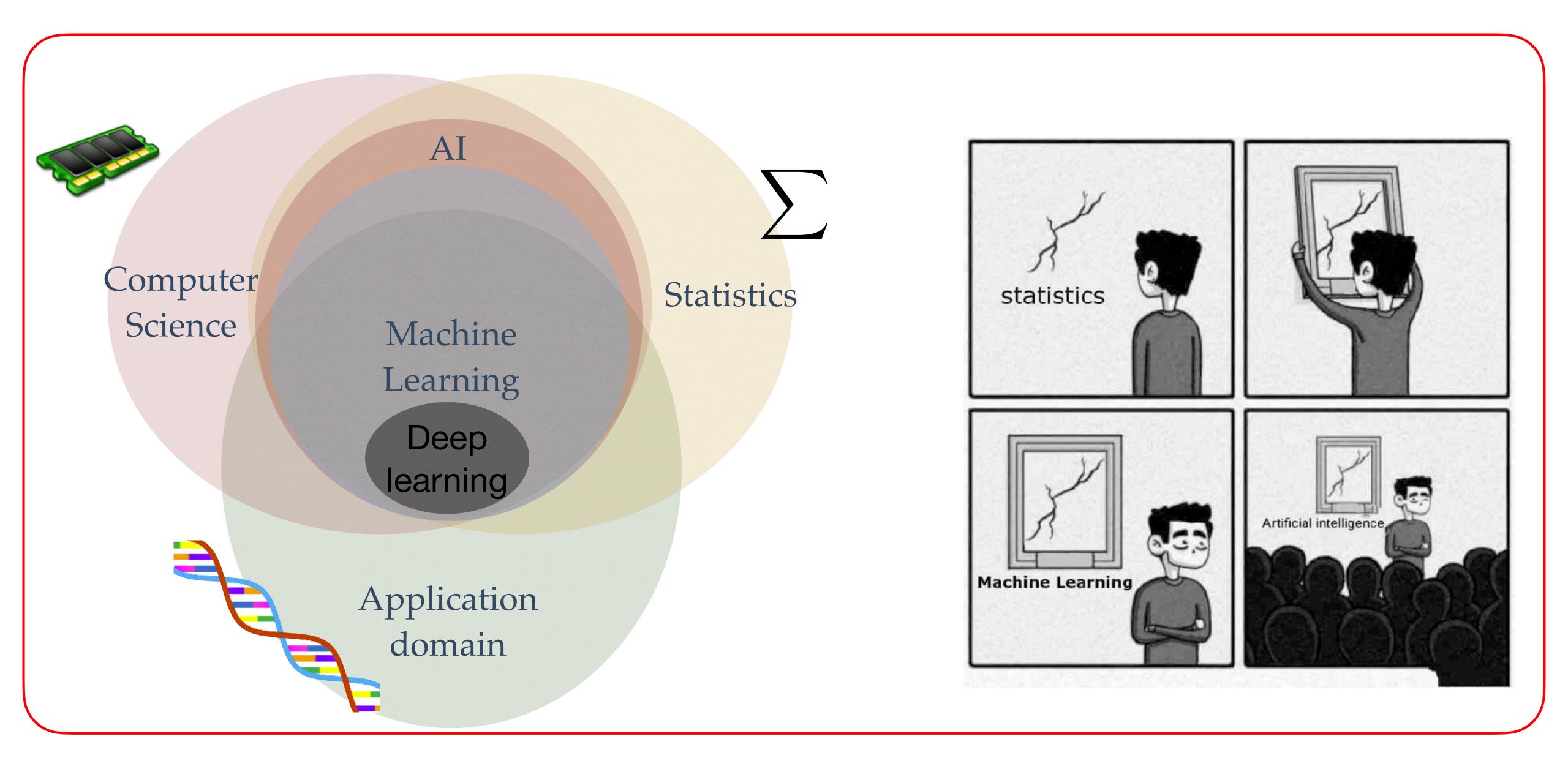
Alan Turing: idea of "machine intelligence" Turing test Symbolic reasoning and neural networks

Expert systems

Practical breakthroughs

IBM's Deep Blue SVM, Reinforcement learning Search engines, recommendation systems, logistics

Some vocabulary



Back to the introduction

What is Machine Learning?

Field which develops

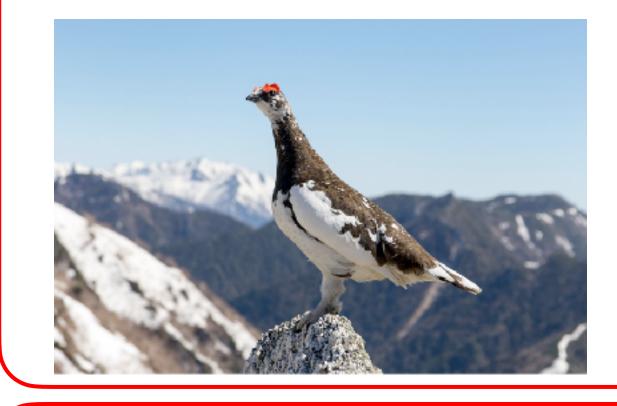
"machines" / "algorithms" / "functions"

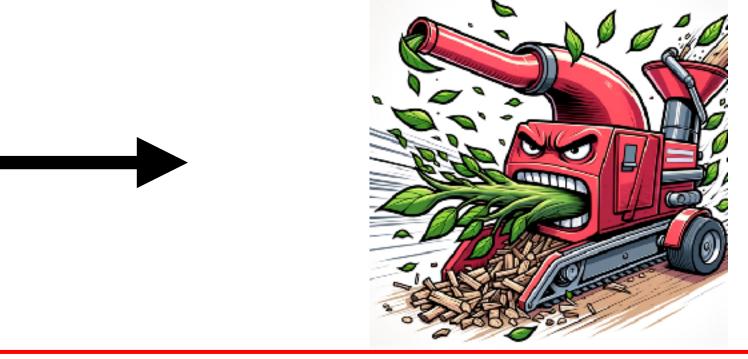
that learn from data

How does it work?

After training:

Proficient neural network

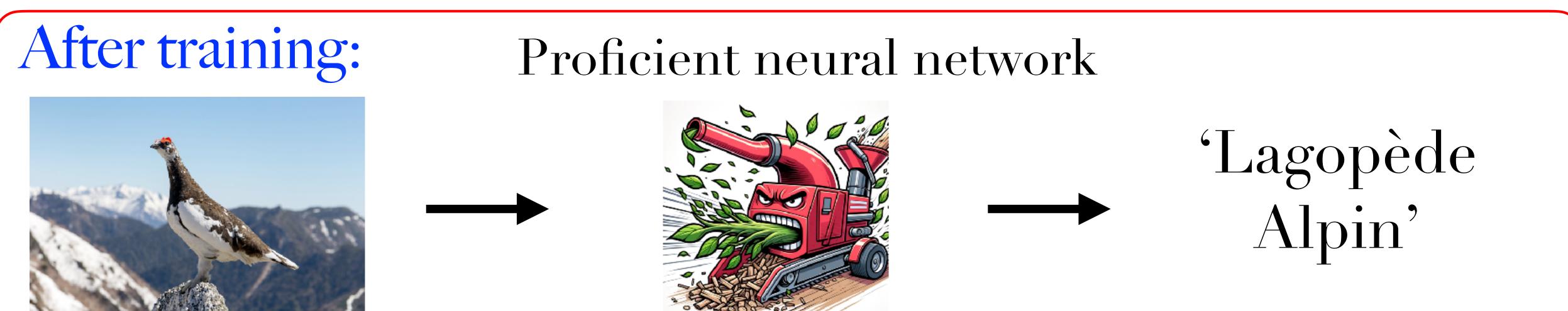




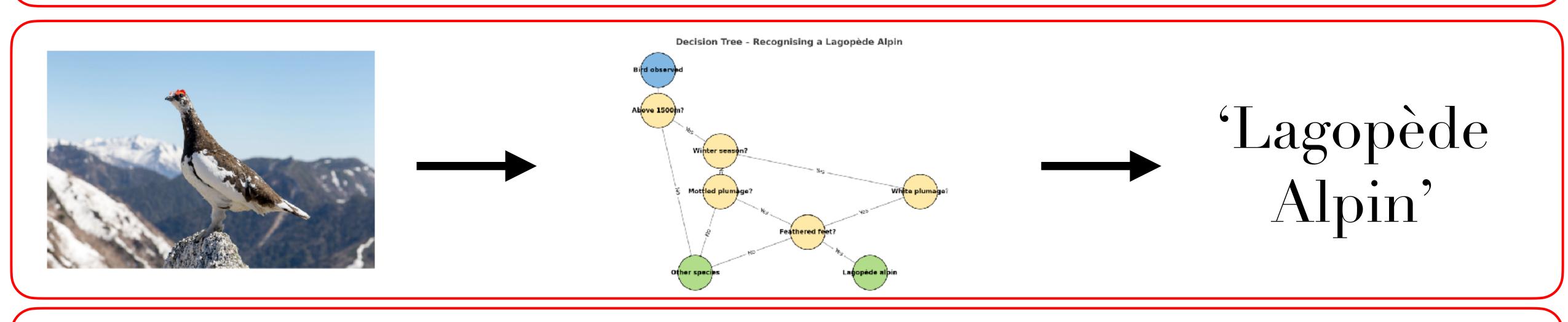
Lagopède Alpin'

It learns 'on its own' to extract the important features

Machine learning vs expert systems



It learns 'on its own' to extract the important features



An "expert" gives a list of "if/then" rules

Pros and cons of two different "AI strategies"

Machine learning

Pros:

- No need to find the rules
- Adapts to data
- Works very well!!

Cons:

- Opacity (what the heck is going on??)
- Needs a "lot" of data

Expert systems

Pros:

- Transparent and understandable

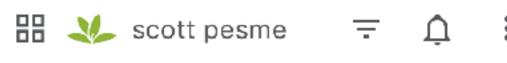
Cons:

- Finding the rules is hard (impossible?)
- Doesn't work very well

Where is machine learning?

Text generation:

PlantNet:



16 mai 2024

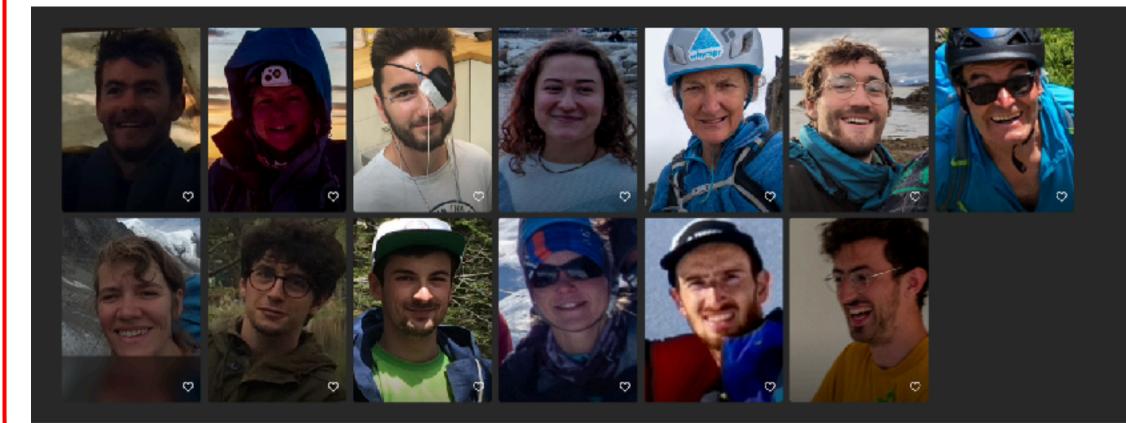
Robinia viscosa Michx. ex Vent.
Robinier visqueux

Fabaceae

DETAILS

▼ PARTAGER

Apple's photo app:



Drug discovery:

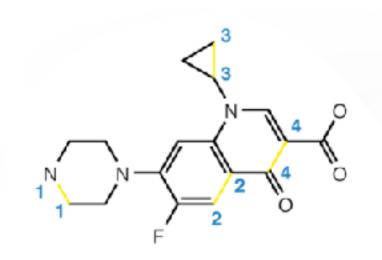


Image generation:

But also:

Deep fakes

Scams

Mass surveillance

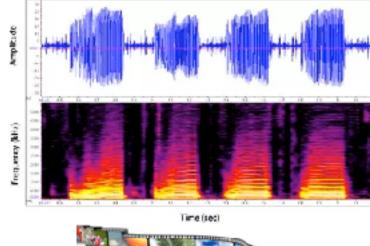
Learning a mapping / function from input to output

Input $x \in \mathbb{R}^d$

Text What is the capital of France?

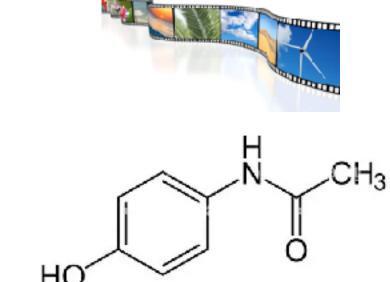
Image

Audio



Video

Graph



"Feature" vector (Height, age, income)

Trainable function

$$f_w(x) = \hat{y}$$

Output $y \in \mathbb{R}^p$

Text

Image

Audio

Video

Graph

"Feature" vector

How is the input represented "inside the machine"?

Input

Text

What is the capital of France?

Image

Audio

Tiera (sec)

Video

Graph

"Feature" vector (Height, age, income)

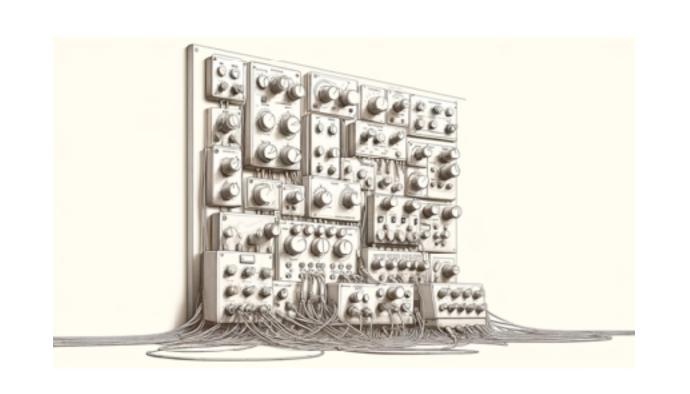
"Digital" representation

$$x = ??$$

How do we get a machine to learn?

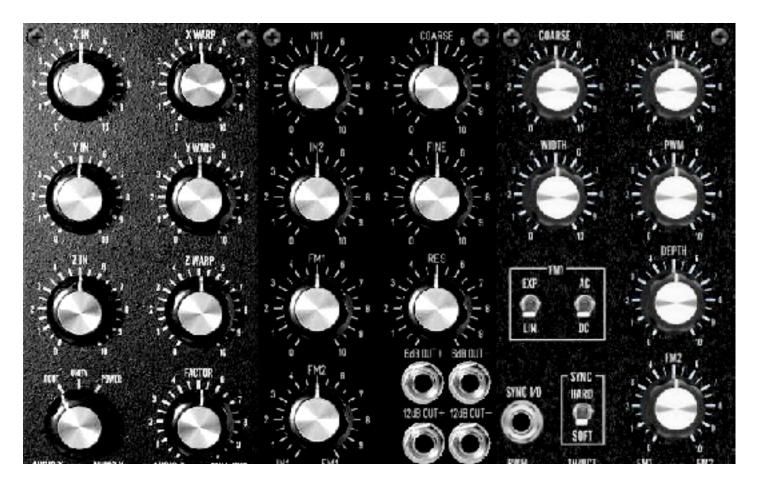
The neural network

looks rather like:



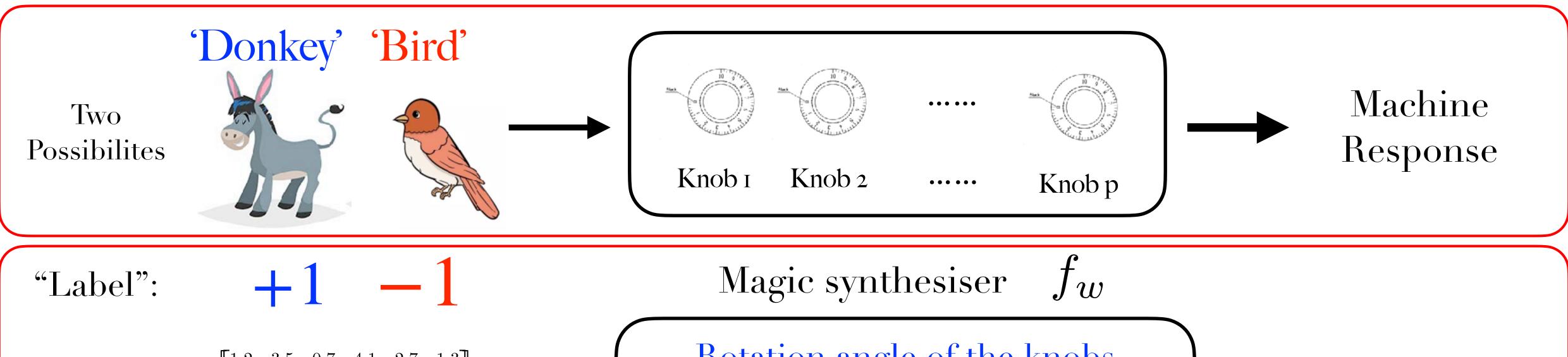
Training:

Neural network at school



Training a neural network corresponds to turning knobs

Same story, but with math



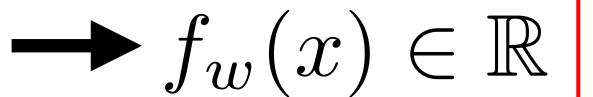
Pixel Intensity:

$$\begin{bmatrix} x_{.1}2 & 3x_{.5} & 0x_{.7} & 4x_{.4} & 2x_{.7} & 1x_{.8} \\ 0x_{.6} & 2x_{.8} & 3x_{.3} & x_{.1b} & 0x_{.5} & 4x_{.92} \\ 7x_{12} & 2x_{14} & 4x_{13} & 0x_{19} & 3x_{.3} & 2x_{.22} \\ 3x_{17} & 0x_{29} & 4x_{28} & 5x_{25} & 0x_{22} & 4x_{19} \\ 4x_{26} & 3x_{24} & 2x_{22} & 2x_{28} & 4x_{29} & 0x_{30} \\ 0x_{33} & 4x_{35} & 6x_{34} & 2x_{39} & 3x_{36} & 4x_{39} \end{bmatrix}$$

Rotation angle of the knobs

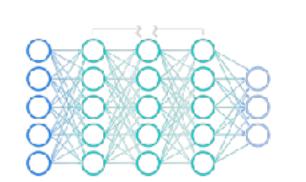
$$(3.2, -4.1, \dots, 10.7)$$

 $w = (w_1, w_2, \dots, w_p) \in \mathbb{R}^p$



The magical synthetiser: neural networks

$$x \in \mathbb{R}^d \longrightarrow f_w(x) = w_7 \max(0, w_1x_1 + w_2x_2 + w_3x_3) + w_8 \max(0, w_4x_4 + w_5x_5 + w_6x_6)$$



$$\rightarrow f_w(x) = W_L \phi(W_{L-1} \phi(\cdots \phi(W_1 x + b_1) \cdots) + b_{L-1}) + b_L.$$

The learning procedure, but with math

Label +1

$$\begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\ x_7 & x_8 & x_9 & x_{10} & x_{11} & x_{12} \\ x_{13} & x_{14} & x_{15} & x_{16} & x_{17} & x_{18} \\ x_{19} & x_{20} & x_{21} & x_{22} & x_{23} & x_{24} \\ x_{25} & x_{26} & x_{27} & x_{28} & x_{29} & x_{30} \\ x_{31} & x_{32} & x_{33} & x_{34} & x_{35} & x_{36} \end{bmatrix}$$

$$x \in \mathbb{R}^d$$

Magic synthetiser f_w

Knob i Knob 2 Knob p

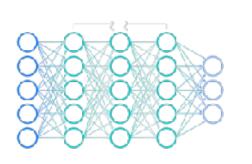
$$w = (w_1, w_2, \cdots, w_p) \in \mathbb{R}^p$$

Machine Response

$$f_w(x) \in \mathbb{R}$$

Magic synthesisers: neural networks

$$\mathcal{X} \longrightarrow f_w(x) = w_7 \max(0, w_1x_1 + w_2x_2 + w_3x_3) + w_8 \max(0, w_4x_4 + w_5x_5 + w_6x_6)$$



How can we get it to learn?

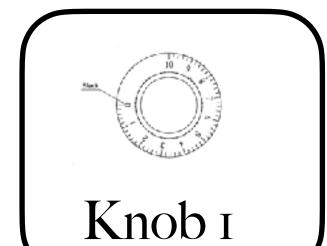
Before training, it predicts $f_w(x)$ (-234.5), and we want it to predict "Donkey" (+1)

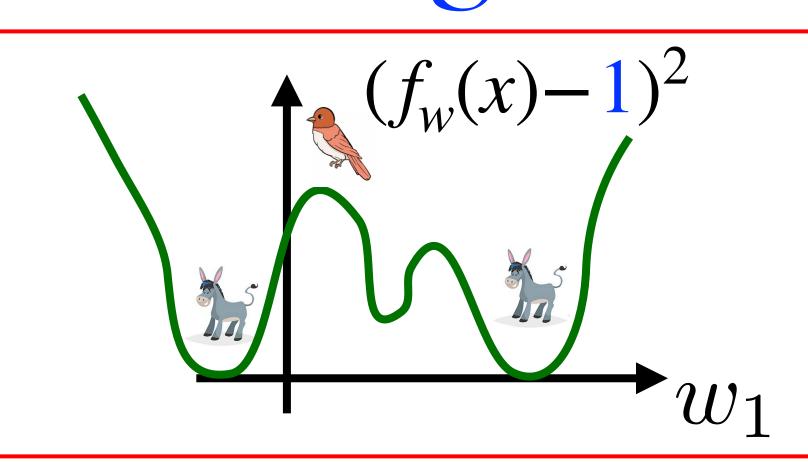
We can model it's mistake by $L(w) = (f_w(x) - 1)^2$

We want to minimise the mistake! $\min_{w \in \mathbb{R}^p} (f_w(x) - 1)^2$

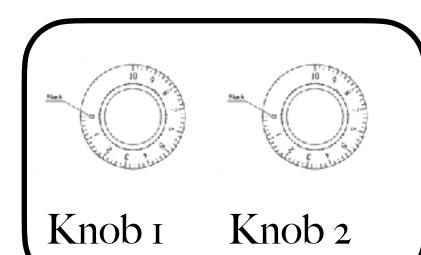
 $\min_{w \in \mathbb{R}^p} (f_w(x) - 1)^2$

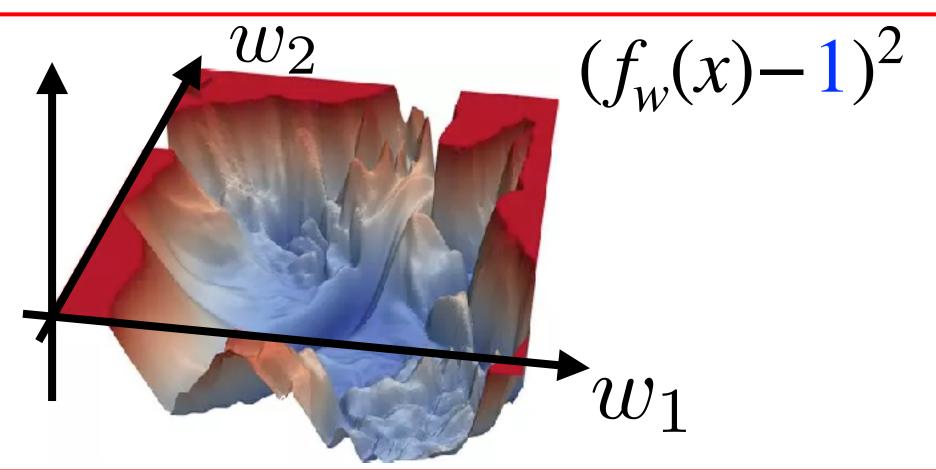
$$w = (w_1)$$

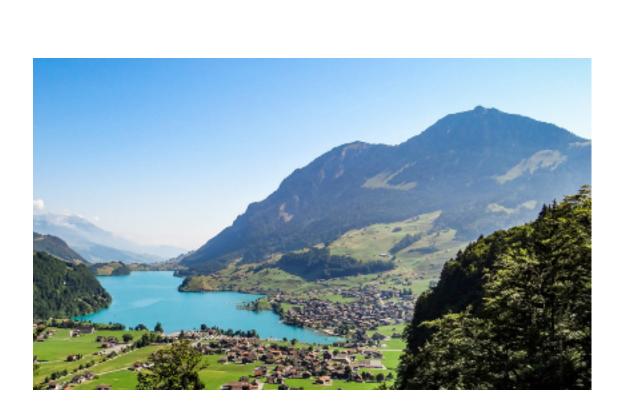


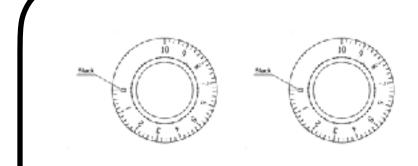


$$w = (w_1, w_2)$$





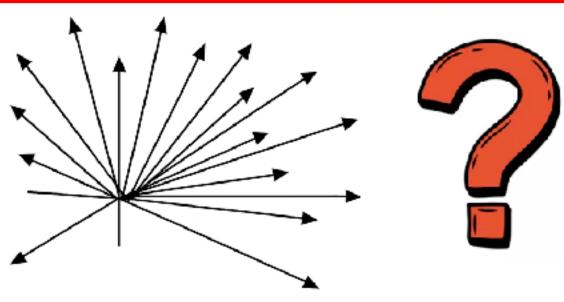


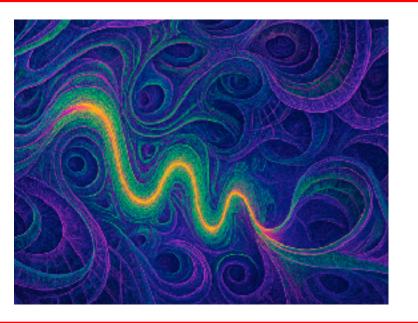


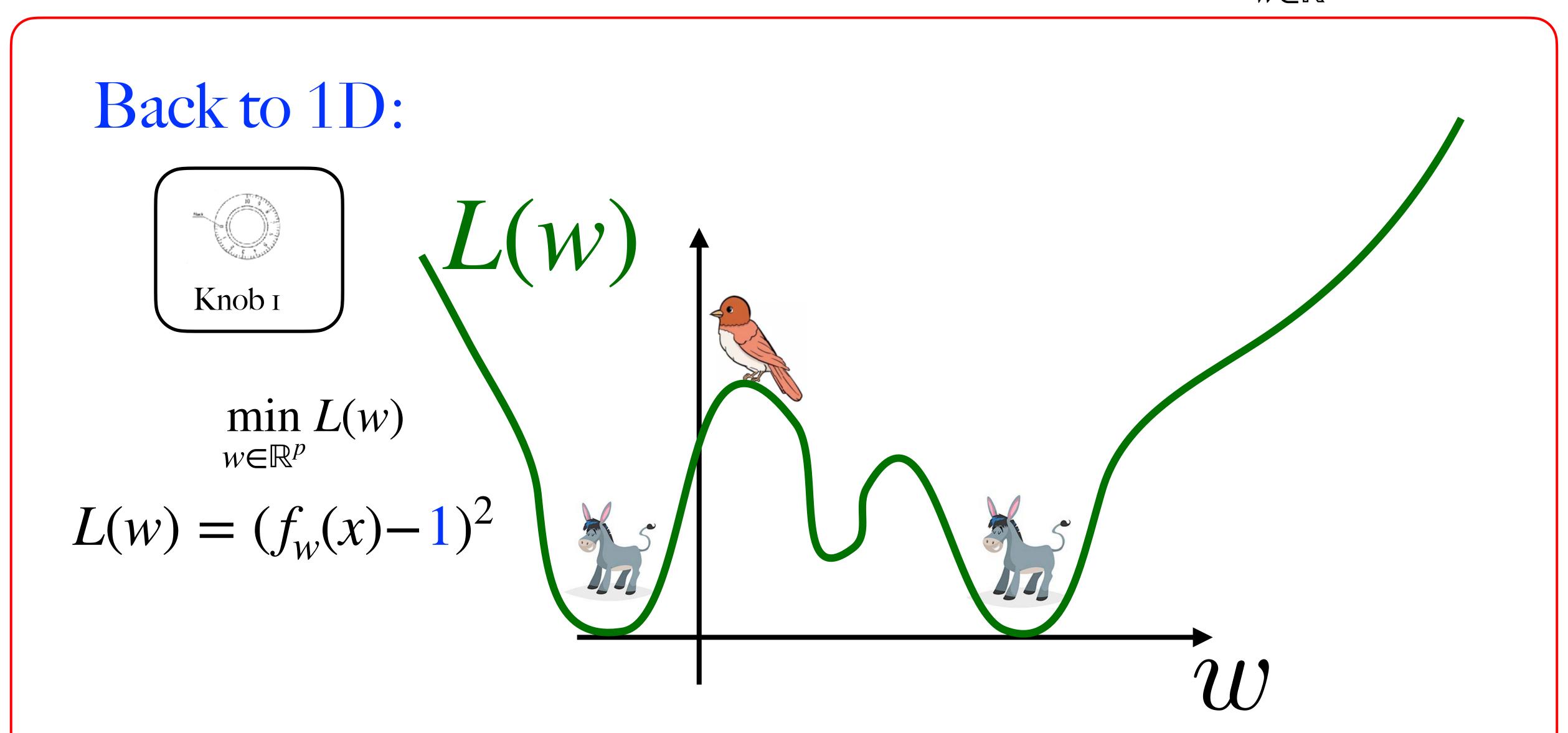
Knob 1 Knob 2

Naci

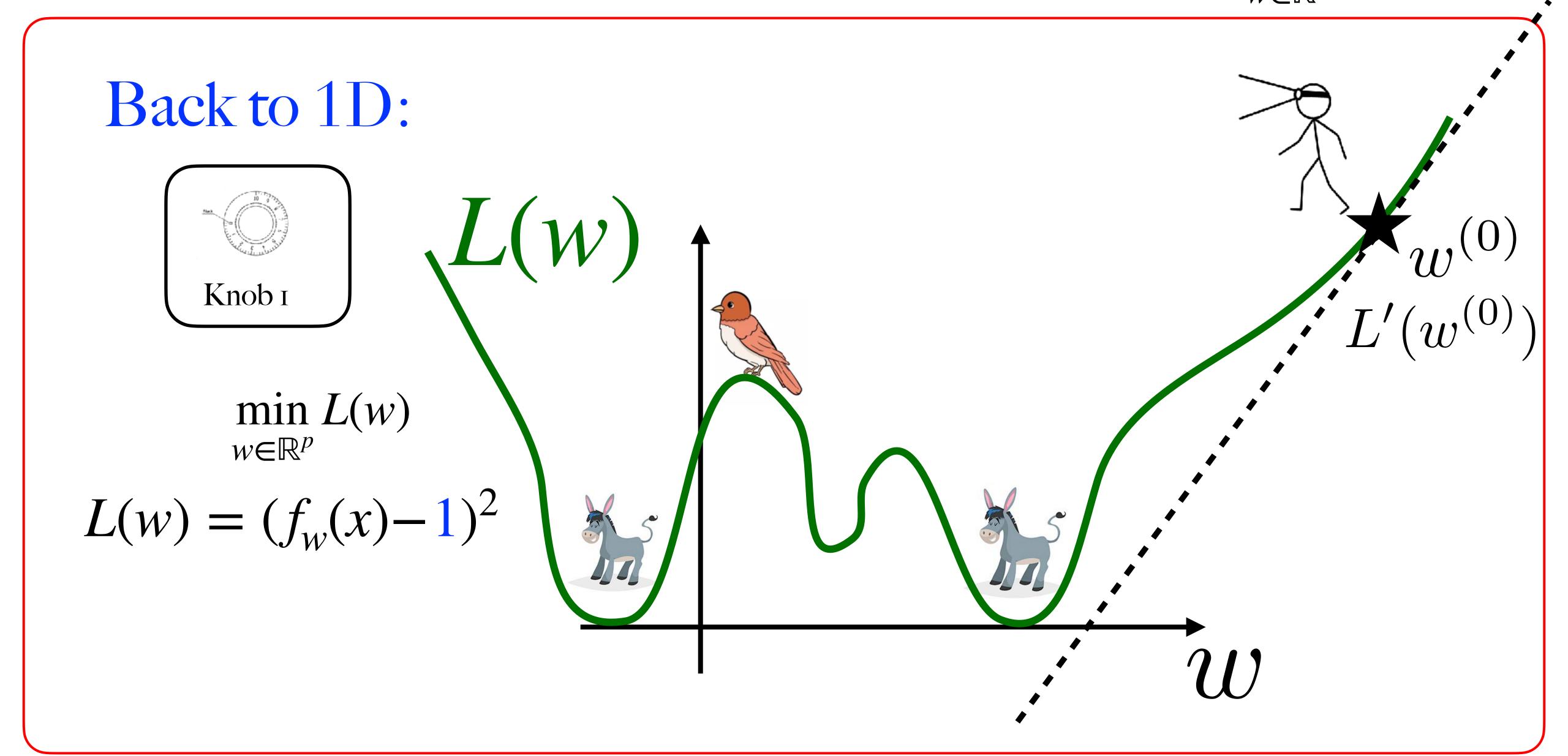
Knob p

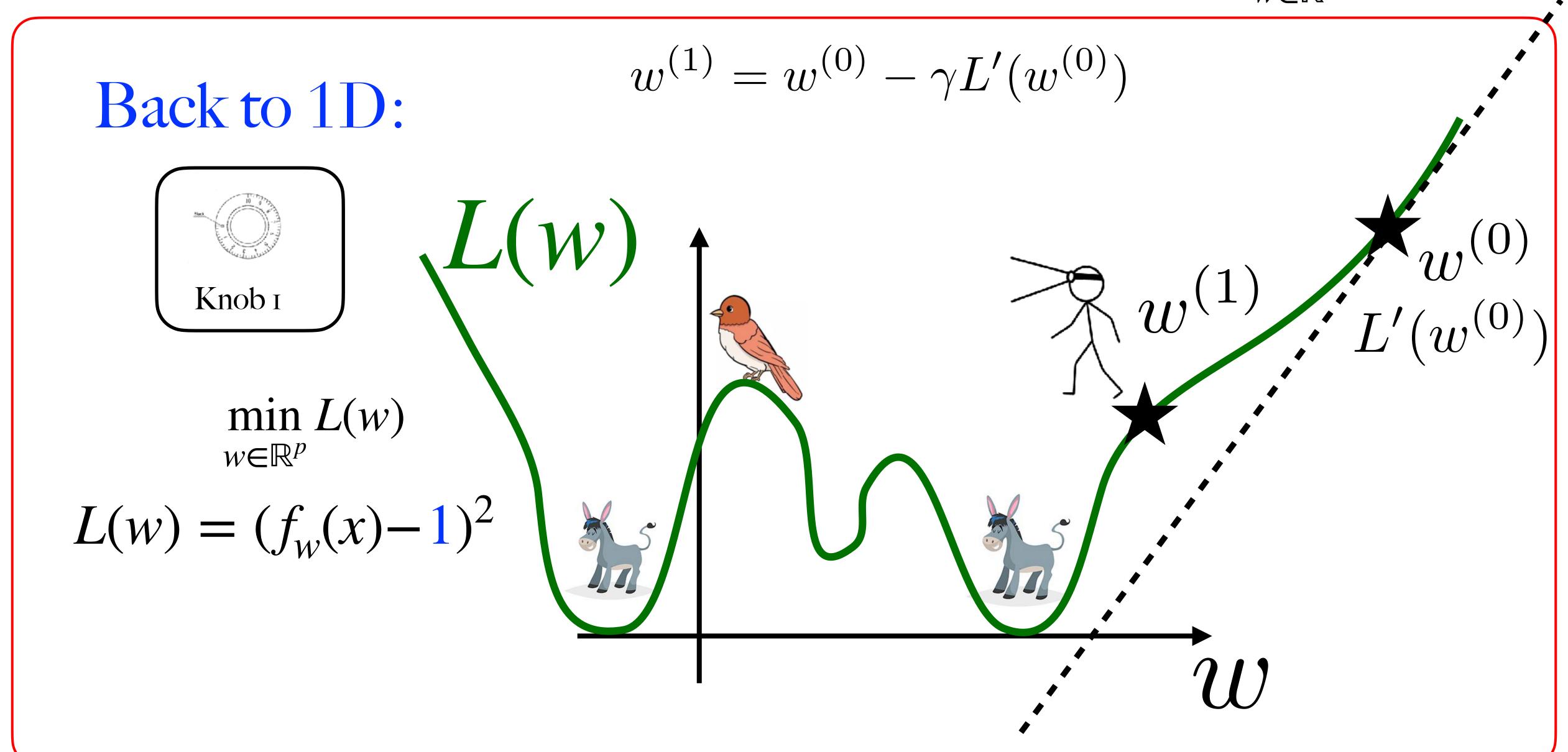


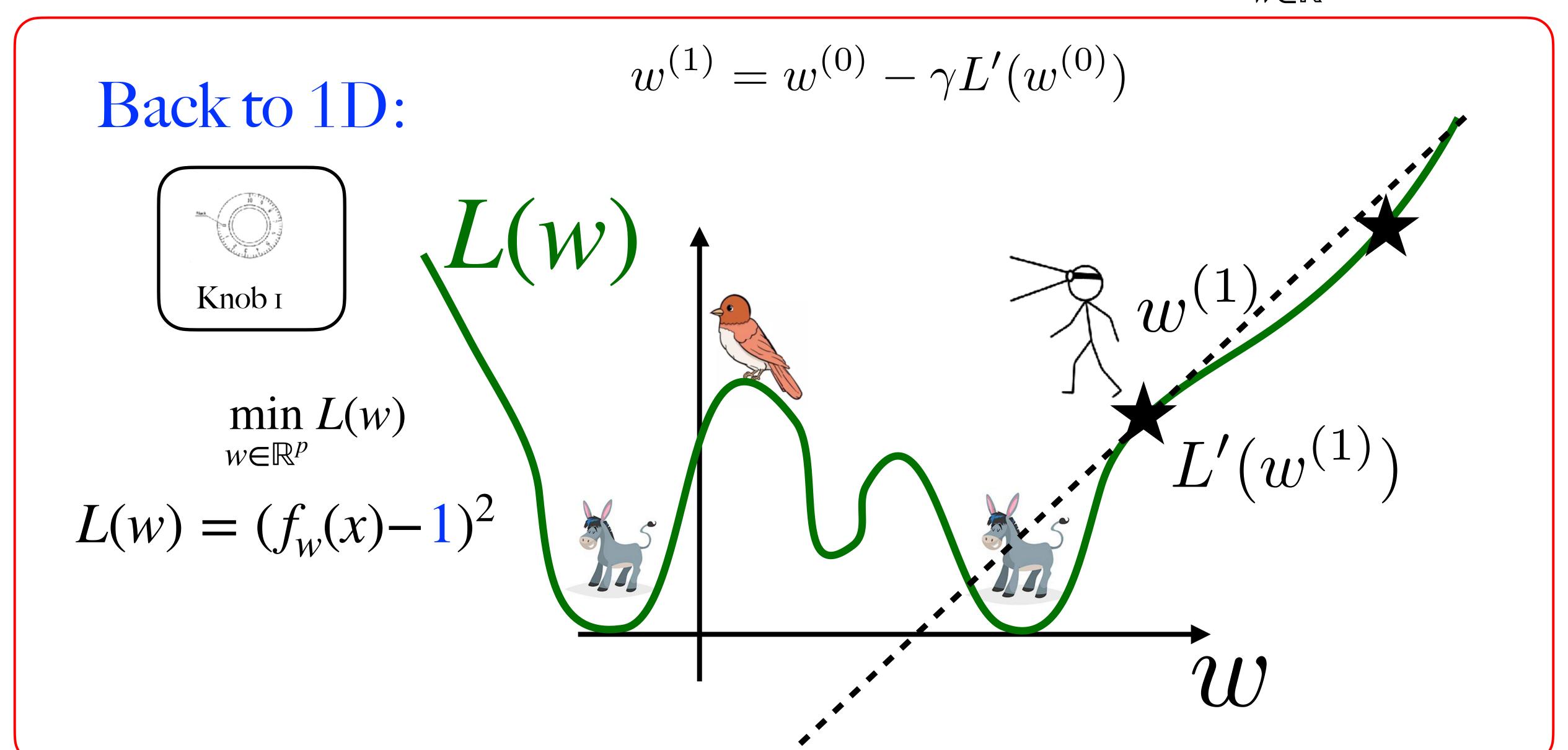




$$\min_{w \in \mathbb{R}^p} (f_w(x) - 1)^2$$



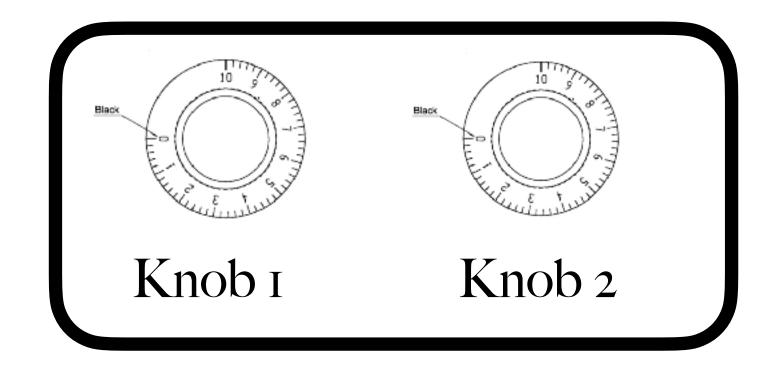






$$\min_{w \in \mathbb{R}^p} (f_w(x) - 1)^2$$

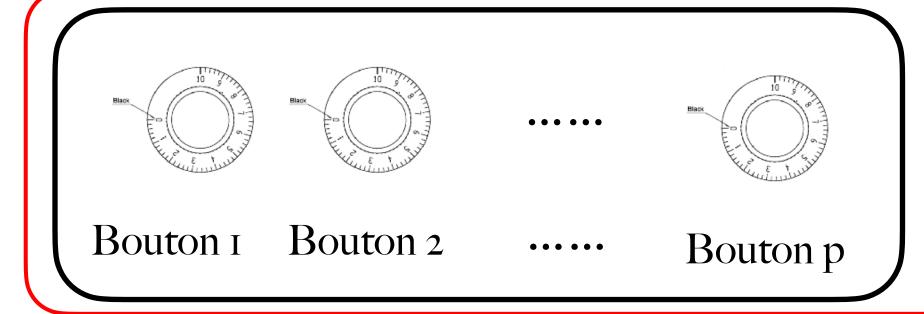
En 2D:

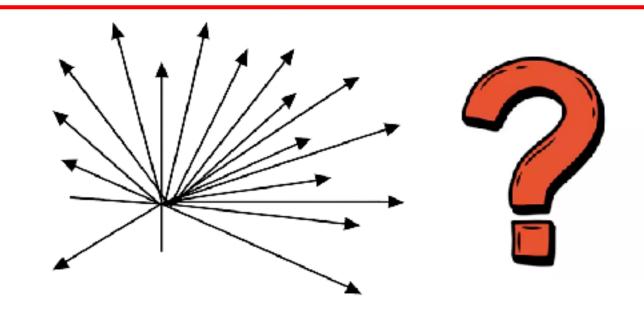


 $\min_{w \in \mathbb{R}^p} L(w)$

$$L(w) = (f_w(x) - 1)^2$$

$$\min_{w \in \mathbb{R}^p} (f_w(x) - 1)^2$$





$$\min_{w \in \mathbb{R}^p} L(w)$$

$$L(w) = (f_w(x) - 1)^2$$

Gradient descent method:

$$w^{(k+1)} = w^{(k)} - \gamma \nabla L(w^{(k)})$$

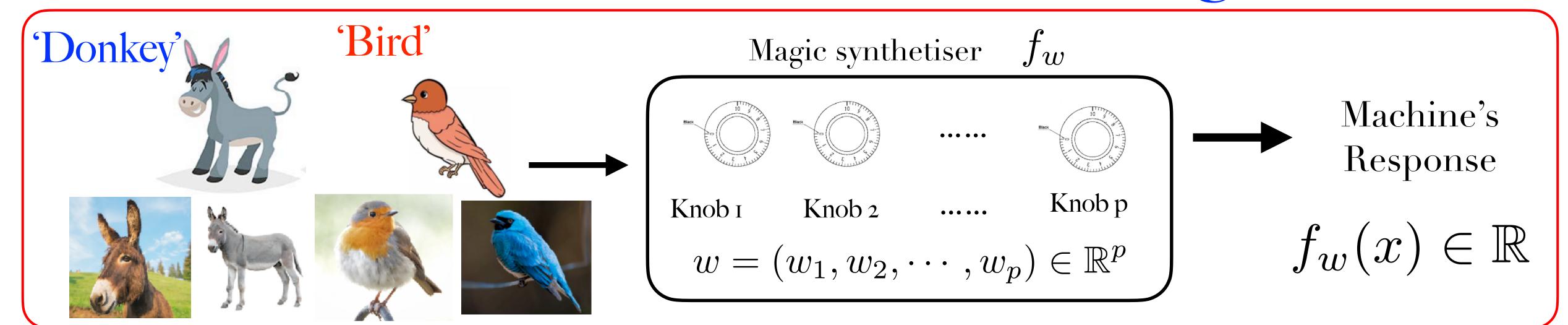
In which direction

If "everything goes well": $L(w^{(k)}) \xrightarrow[k \to \infty]{} 0 \quad f_{w^{(k)}}(x) \xrightarrow[k \to \infty]{} 1$

$$L(w^{(k)}) \xrightarrow[k \to \infty]{}$$

$$f_{w^{(k)}}(x) \xrightarrow[k \to \infty]{}$$

But there is more than one image!



Data:

$$(x_1,y_1),\cdots,(x_n,y_n)$$

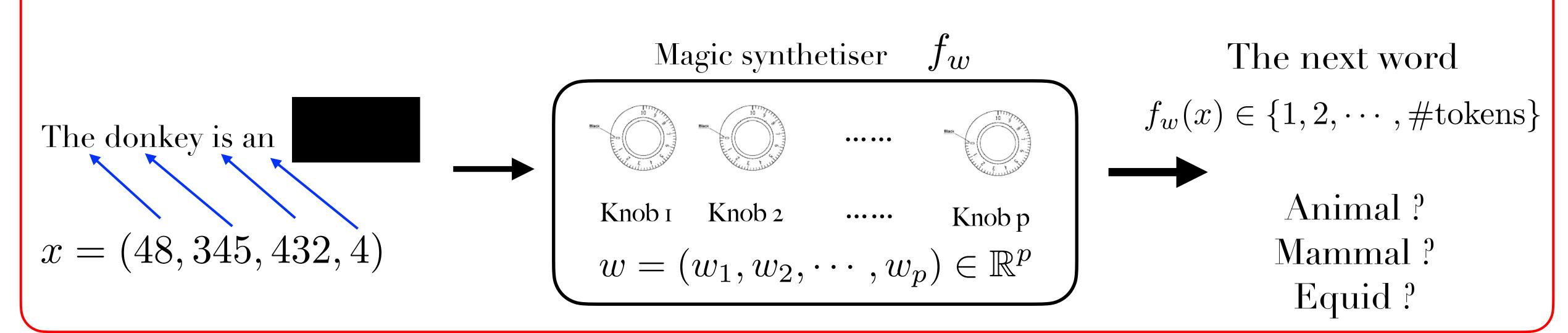
Loss to minimise:

$$\min_{w} \sum_{i=1}^{n} (y_i - f_w(x_i))^2$$

"Supervised learning"

What about ChatGPT?

The donkey is an equid. As a herbivore, it frequently consumes fibrous plants.



Data (sentences):

$$x_1, x_2, \cdots, x_n$$

Fonction à minimiser:

$$\min_{w} \sum_{i=1}^{n} (\text{mot d'après} - f_w(x_i))^2$$

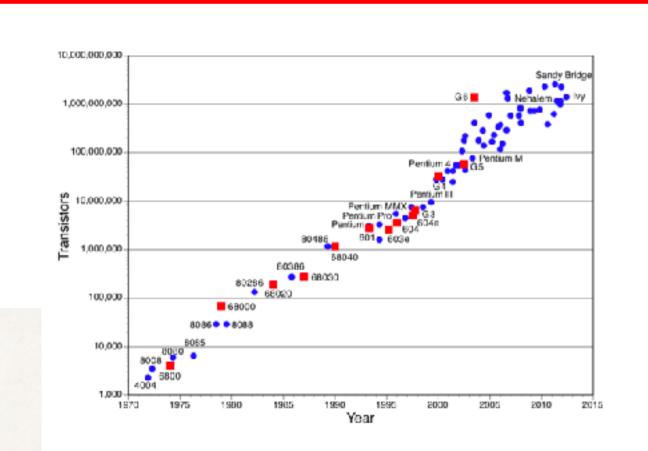
Apprentissage "semi-supervisé"

Taking a step back

Three ingredients behind the success of modern machine learning:

Data: internet (text et images)

1950s: 10³ FLOPs 2024: 10²⁵ FLOPs



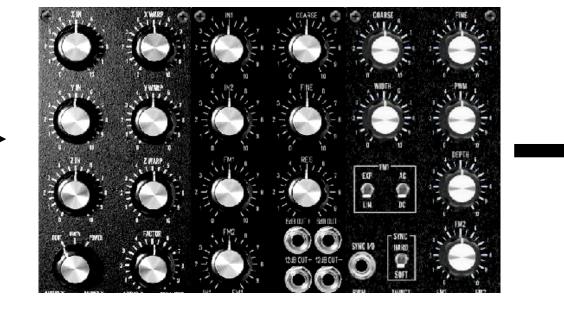
Compute power: graphics processing units (GPU)

Architectures et training techniques:

Neural networks, training algorithms, ...

Training Chat-GPT, some numbers

What's the capital of Switzerland?



Bern

Size of the synthesiser:

A trillion (10¹²) trainable knobs \approx Paris covered with knobs

Energy to turn the knobs: 10GWh energy consumption (€2M euros electricity bill)

To compare:

Bringing up a child to its twenties:

2000Kal/day —> 100Watts

20 MWh from 0 to 20 years old

therefore:

Training ChatGPT $\approx 500 \text{ x}$

0 -> 20

But not much compared to the $\approx 1 \text{GWh}$ daily consumption due to queries!

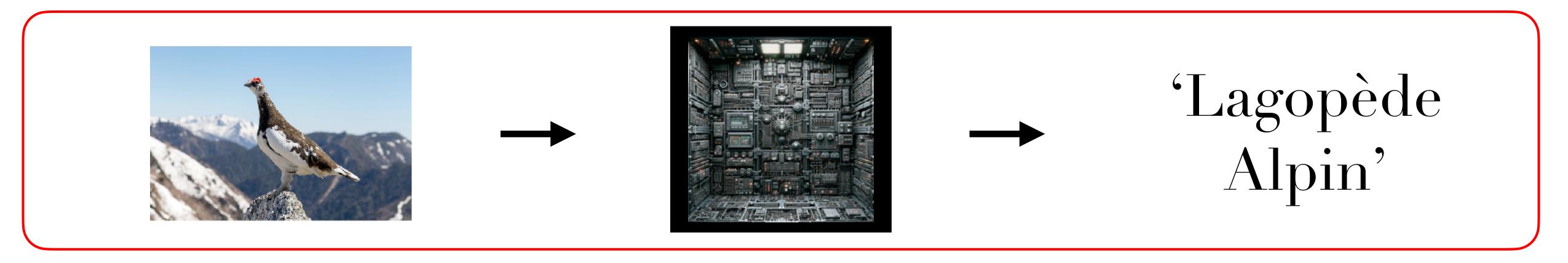
Text seen by ChatGPT:

Trained on a 10 trillion (10^{13}) words ≈ 10 million copies of War and Peace $\approx 100~000$ years to read (no sleeping)

Why don't we understand?

Just because we know exactly what happens at the 'local scale' doesn't mean we understand the behaviour at the macroscopic level.

What are the issues?



It works brilliantly, but we don't understand why!

How does it make a decision? With which criteria? When does it make a mistake? Can we fool it? Is it biased? Can we extract sensible data?

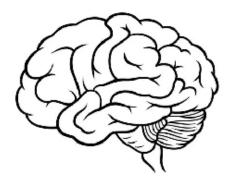
<u>Issues:</u> security, ethics, reliability, sustainability...

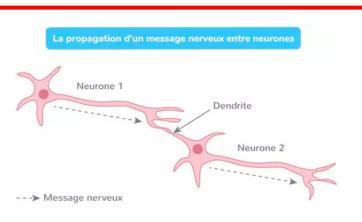
Recent successes challenge many of our conceptions: Machines now navigate territories reserved to conscious beings

Does ChatGPT understand things? Is it intelligent? Is it creative? Could it be conscious?

How do we even define these words?

What about us, humans:





Is consciousness / intelligence only computational? Is creativeness about interpolation or extrapolation?

A better understanding of these seemingly 'intelligent' machines will shed light on many aspects of our own.

So what can we do?

As we don't properly understand them, Current neural network can be depicted as::

Chat-GPT:

Hard to follow what is going on

What theoreticians look at:

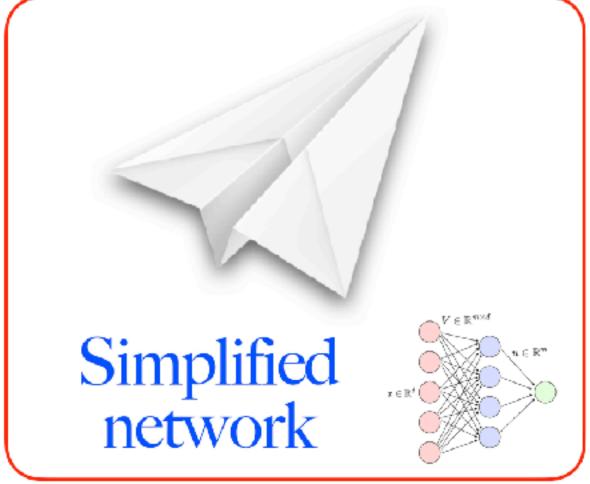
It already has similar properties (it flies!), and much simpler to analyse and understand.

"Nothing is more practical than a good theory"

Practical deep learning

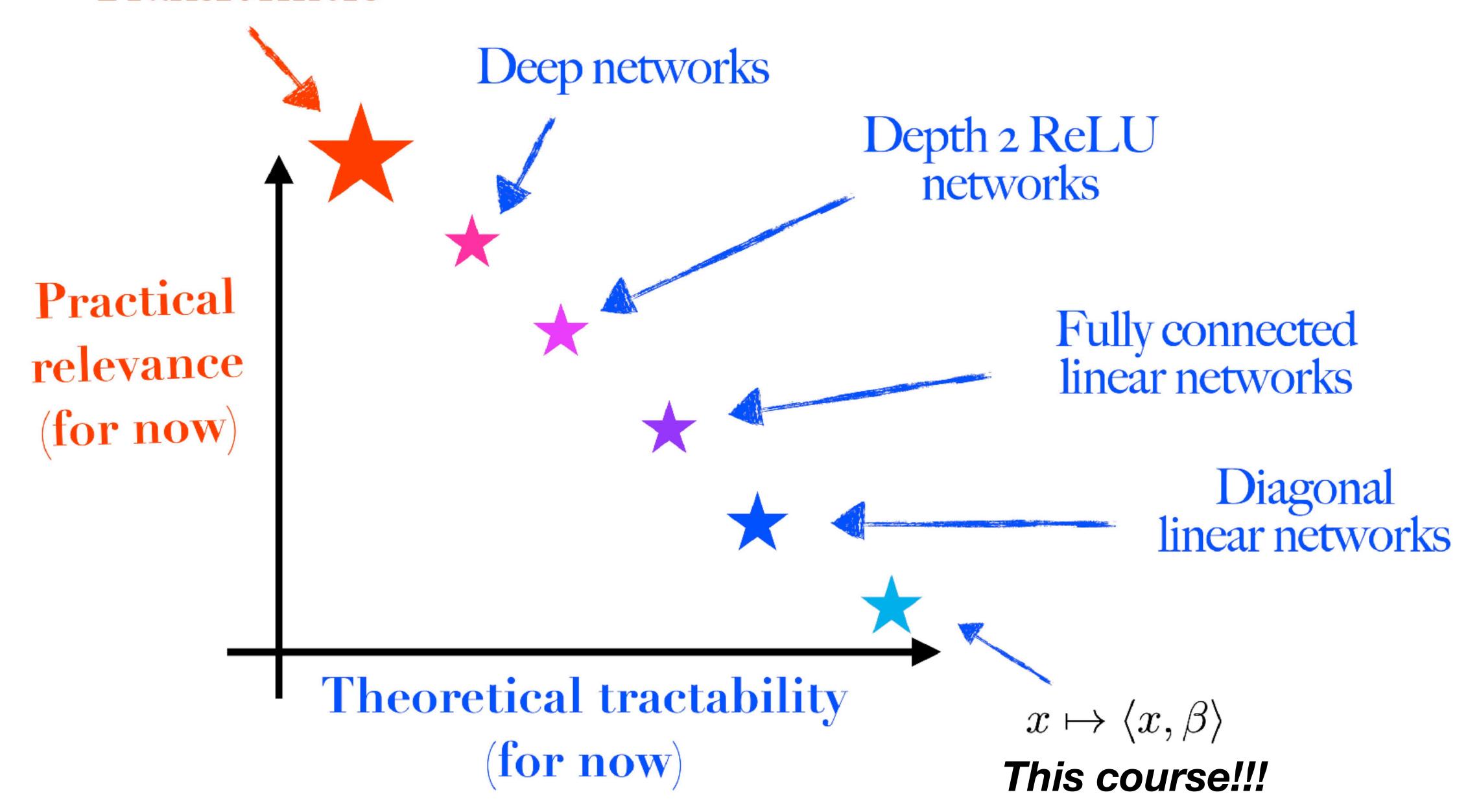
Intuition through experiments

Theoretical deep learning



Understanding and Improvements Future of deep learning (??)

Transformers



Up next: let's do some math!

What you know / don't know yet:

- 1. What is the gradient of $w \in \mathbb{R}^d \mapsto \langle w, x \rangle$
- 2. Let $A \in \mathbb{R}^{d \times d}$, what is $w^{\mathsf{T}} A w$ equal to? a) $\sum_{i=1}^n A_{ij} w_i w_j$ b) $\sum_{i=1}^n A_{ij} w_i w_j$ c) $||Aw||^2$

- 3. Let $A \in \mathbb{R}^{d \times d}$, what is the gradient of $w \in \mathbb{R}^d \mapsto w^{\mathsf{T}} A w$?
- 4. Which of the following are convex functions?

a)
$$w \mapsto ||w||^2$$

a)
$$w \mapsto ||w||^2$$
 b) $w \mapsto w^T A w$

c)
$$w \mapsto \exp(w)$$
 d) $w \mapsto \ln(w)$

d)
$$w \mapsto \ln(w)$$

5. Suppose $f: \mathbb{R}^d \to \mathbb{R}$ is convex and differentiable. Which minimal condition guarantees that w^* is a global minimiser?

a)
$$\nabla f(w^*) = 0$$

b)
$$\nabla^2 f(w^*) \geq 0$$

c)
$$\nabla f(w^*) = 0$$
 and $\nabla^2 f(w^*) \ge 0$