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Introduction

We have seen how to represent each individual data-point by an
embedding in some feature space.

This allows to compare data points by evaluating the kernel.

Now we are interested in comparing two or more sets of data-points,
or more generally distributions of data points.
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Motivation I: Comparing two distributions

Data: Samples from unknown distributions P and Q.
Goal: do P and Q differ?

Differences between dogs and fish. 3 / 58
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Difference in brain signals: Do local field potential (LFP) signals change
when measured near a spike burst?
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Motivation II: Detecting dependence
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Motivation II: Detecting dependence

7 / 58



Motivating questions

Comparing distributions in high dimensions, low sample size and
”complex” structure.

Detecting dependence in high dimensional data

Feature selection
Blind source separation.
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Outline

1 Characterizing probabilities with kernels
Kernel mean embedding
The Maximum Mean Discrepancy
Characteristic kernels
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Feature mean difference

Simple example: Samples from 2 Gaussians with same means but
different variance.

Idea: Look at difference in means of features of the samples.

Compare

µ̂P =
1

N

N∑
i=1

xi ,

µ̂Q =
1

M

N∑
j=1

yj
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Feature mean difference

Simple example: Samples from 2 Gaussians with same means but
different variance.

Idea: Look at difference in means of features of the samples. Here
ϕ(x) = (x , x2).

Compare

µ̂P =
1

N

N∑
i=1

ϕ(xi ),

µ̂Q =
1

M

N∑
j=1

ϕ(yj)
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Feature mean difference

Simple example: Centered Gaussian and Laplace distributions: same
mean and variance.
Idea: Look at difference in means of high order features of the
samples: ϕ(x) = (x , x2, ...) (RKHS).

Compare

µ̂P =
1

N

N∑
i=1

ϕ(xi ),

µ̂Q =
1

M

N∑
j=1

ϕ(yj)
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Kernel Mean Embedding

Definition

Given a kernel K defined on a topological set X with corresponding
RKHS H, the mean embedding of a Borel probability distribution P on X
is the function µP : X → R in H defined as

µP(y):=EX∼P[K (X , y)]
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Definition

Given a kernel K defined on a topological set X with corresponding
RKHS H, the mean embedding of a Borel probability distribution P on X
is the function µP : X → R in H defined as

µP(y):=EX∼P[K (X , y)]

For any x , x ′ in X ,

K (x , x ′) = 〈Kx ,Kx ′〉H,

The kernel trick:
For any f ∈ H and x ∈ X ,

f (x) = 〈f ,Kx〉H

For any Borel measure P and Q,

E(X ,Y )∼P,QK (X ,Y ) = 〈µP, µQ〉H,

The generalized kernel trick:
For any f ∈ H and Borel measure P,

EX∼P[f (X )] = 〈f , µP〉H
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Kernel Mean Embedding

Kernel Mean Embedding

The kernel mean embedding: µP = EX∼P[KX ]
The generalized kernel trick: EX∼P[f (X )] = 〈f , µP〉H for all f ∈ H.
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Kernel Mean Embedding

The kernel mean embedding: µP = EX∼P[KX ]
The generalized kernel trick: EX∼P[f (X )] = 〈f , µP〉H for all f ∈ H.

Mean embedding µP summarizes P:
Can compute expectations under P of
all functions in H using µP.

In practice, you can estimate µP using
N i.i.d. samples from P:

µ̂P(x) =
1

N

N∑
i=1

K (Xi , x), Xi
i .i .d .∼ P
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Kernel Mean Embedding

Kernel Mean Embedding

The kernel mean embedding: µP = EX∼P[KX ]
The generalized kernel trick: EX∼P[f (X )] = 〈f , µP〉H for all f ∈ H.

Mean embedding µP summarizes P:
Can compute expectations under P of
all functions in H using µP.

In practice, you can estimate µP using
N i.i.d. samples from P:

µ̂P(x) =
1

N

N∑
i=1

K (Xi , x), Xi
i .i .d .∼ P

Does the mean embedding µP exist? i.e. an element µP ∈ H such that

EX∼P[f (X )] = 〈f , µP〉H,∀f ∈ H.
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Existence of mean embeddings

Proposition

Let P be a Borel probability distribution on a set X endowed with its
Borel sigma algebra. Let K be a p.d. kernel defined on X with
corresponding RKHS H. Assume that EX∼P[

√
K (X ,X )] <∞. Then

there exits a unique element µP ∈ H such that

EX∼P[f (X )] = 〈f , µP〉H,∀f ∈ H.

In particular, for any y ∈ X , it holds that:

µP(y) = 〈Ky , µP〉 = EX∼P[K (X , y)].
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Existence of mean embeddings

Proposition

Let P be a Borel probability distribution on a set X endowed with its
Borel sigma algebra. Let K be a p.d. kernel defined on X with
corresponding RKHS H. Assume that EX∼P[

√
K (X ,X )] <∞. Then

there exits a unique element µP ∈ H such that

EX∼P[f (X )] = 〈f , µP〉H,∀f ∈ H.

In particular, for any y ∈ X , it holds that:

µP(y) = 〈Ky , µP〉 = EX∼P[K (X , y)].

Proof:
The linear form on H: TPf = EX∼P[f (X )] is bounded by assumption:

|TPf | ≤ EX∼P[|f (X )|] = EX∼P[|〈f ,KX 〉H|] ≤ EX∼P[
√

K (X ,X )‖f ‖H].

Hence, by Riesz’s theorem, there exists µP ∈ H such that TPf =〈f , µP〉H.
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Outline

1 Characterizing probabilities with kernels
Kernel mean embedding
The Maximum Mean Discrepancy
Characteristic kernels
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Motivation: Comparing two distributions

Data: Samples from unknown distributions P and Q.

Goal: do P and Q differ?

Differences between dogs and fish.
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The Maximum Mean Discrepancy

The maximum mean discrepancy (MMD) is the RKHS distance between
mean embeddings:

MMD2(P,Q) =‖µP − µQ‖2
H

=〈µP, µP〉H + 〈µQ, µQ〉H − 2〈µP, µQ〉H
=EX ,X ′∼P⊗P[k(X ,X ′)] + EY ,Y ′∼Q⊗Q[k(Y ,Y ′)]

− 2EX ,Y∼P⊗Q[k(X ,Y )]

18 / 58



The Maximum Mean Discrepancy

The maximum mean discrepancy (MMD) is the RKHS distance between
mean embeddings:

MMD2(P,Q) =‖µP − µQ‖2
H

=〈µP, µP〉H + 〈µQ, µQ〉H − 2〈µP, µQ〉H

=EX ,X ′∼P⊗P[k(X ,X ′)] + EY ,Y ′∼Q⊗Q[k(Y ,Y ′)]

− 2EX ,Y∼P⊗Q[k(X ,Y )]

18 / 58



The Maximum Mean Discrepancy

The maximum mean discrepancy (MMD) is the RKHS distance between
mean embeddings:

MMD2(P,Q) =‖µP − µQ‖2
H

=〈µP, µP〉H + 〈µQ, µQ〉H − 2〈µP, µQ〉H
=EX ,X ′∼P⊗P[k(X ,X ′)] + EY ,Y ′∼Q⊗Q[k(Y ,Y ′)]

− 2EX ,Y∼P⊗Q[k(X ,Y )]

18 / 58



The Maximum Mean Discrepancy

The maximum mean discrepancy (MMD) is the RKHS distance between
mean embeddings:

MMD2(P,Q) =‖µP − µQ‖2
H

=〈µP, µP〉H + 〈µQ, µQ〉H − 2〈µP, µQ〉H
=EX ,X ′∼P⊗P[k(X ,X ′)] + EY ,Y ′∼Q⊗Q[k(Y ,Y ′)]

− 2EX ,Y∼P⊗Q[k(X ,Y )]

Intra-similarity terms : EX ,X ′∼P⊗P[k(X ,X ′)] and
EY ,Y ′∼Q⊗Q[k(Y ,Y ′)].
Inter-similarity term: EX ,Y∼P⊗Q[k(X ,Y )].
In general, MMD is a semi-metric: (MMD(P,Q) = 0 ; P = Q).
For some kernels (called characteristic kernels), MMD is a metric
(MMD(P,Q) = 0 ⇐⇒ P = Q).
From now on, we assume MMD is a metric. Later, we’ll say more
about characteristic kernels. 18 / 58



Unbiased esitimation of the MMD

Data: i.i.d. samples from P and Q
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Unbiased esitimation of the MMD

Data: i.i.d. samples from P and Q

Biased estimate of the MMD2:

̂MMD2(P,Q) =
1

N2

∑
i ,j

K (dogi , dogj) +
1

M2

∑
i ,j

K (fishi , fishj)

− 2

NM

∑
i ,j

k(dogi , fishj)
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Unbiased esitimation of the MMD

Data: i.i.d. samples from P and Q

Unbiased estimate of the MMD2:

̂MMD2(P,Q) =
1

N(N − 1)

∑
i 6=j

K (dogi , dogj) +
1

M(M − 1)

∑
i 6=j

K (fishi , fishj)

− 2

NM

∑
i ,j

k(dogi , fishj)
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MMD as an Integral Probability Metric

Integral Probability Metric

Let F be a set of measurable functions. An integral probability metric
associated to the class F is a semi-metric defined as

DF (P,Q) := sup
f ∈F

EX∼P[f (X )]− EY∼Q[f (Y )].
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Integral Probability Metric

Let F be a set of measurable functions. An integral probability metric
associated to the class F is a semi-metric defined as

DF (P,Q) := sup
f ∈F

EX∼P[f (X )]− EY∼Q[f (Y )].

MMD obtained by choosing F = {f ∈ H|‖f ‖H ≤ 1}:
MMD(P,Q) := sup

f ∈H
‖f ‖H≤1

EX∼P[f (X )]− EY∼Q[f (Y )]
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MMD as an Integral Probability Metric

Integral Probability Metric

Let F be a set of measurable functions. An integral probability metric
associated to the class F is a semi-metric defined as

DF (P,Q) := sup
f ∈F

EX∼P[f (X )]− EY∼Q[f (Y )].

MMD obtained by choosing F = {f ∈ H|‖f ‖H ≤ 1}:
MMD(P,Q) := sup

f ∈H
‖f ‖H≤1

EX∼P[f (X )]− EY∼Q[f (Y )]

Other choices for the set F :

Bounded continuous → Dudley’s metric.
Bounded variations → Kolmogorov metric.
Bounded Lipschitz → 1-Wasserstein distance.
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MMD as an Integral Probability Metric

MMD obtained by choosing F = {f ∈ H|‖f ‖H ≤ 1}:

MMD(P,Q) = sup
f ∈H
‖f ‖H≤1

EX∼P[f (X )]− EY∼Q[f (Y )]
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MMD as an Integral Probability Metric

MMD obtained by choosing F = {f ∈ H|‖f ‖H ≤ 1}:

MMD(P,Q) = sup
f ∈H
‖f ‖H≤1

EX∼P[f (X )]− EY∼Q[f (Y )]

= sup
f ∈H
‖f ‖H≤1

〈f , µP − µQ〉H

=〈f ?, µP − µQ〉H
=‖µP − µQ‖H
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MMD as an Integral Probability Metric

MMD obtained by choosing F = {f ∈ H|‖f ‖H ≤ 1}:

MMD(P,Q) = sup
f ∈H
‖f ‖H≤1

EX∼P[f (X )]− EY∼Q[f (Y )]

= sup
f ∈H
‖f ‖H≤1

〈f , µP − µQ〉H

=〈f ?, µP − µQ〉H
=‖µP − µQ‖H

f ? =
µP − µQ
‖µP − µQ‖

f ? is called the
witness function
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Outline

1 Characterizing probabilities with kernels
Kernel mean embedding
The Maximum Mean Discrepancy

Applications (I): Statistical testing using the MMD
Applications (II): Learning generative models

Characteristic kernels
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A statistical test using MMD

For simplicity assume same number of samples from P and Q:

̂MMD2(P,Q) =
1

N(N − 1)

∑
i 6=j

K (xi , xj) +
1

N(N − 1)

∑
i 6=j

K (yi , yj)

− 2

N2

∑
i ,j

K (xi , yj)

Null hypothesis h0 when P = Q.
̂MMD2(P,Q) should be close to zero.

Alternative hypothesis h1 when P 6= Q.
̂MMD2(P,Q) should be far away from zero.

What do close or far away mean here?
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Behaviour of MMD when P 6= Q
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Behaviour of MMD when P 6= Q

The statistic ̂MMD2(P,Q) is asymptotically normal [Gretton, 2006]:
√

n( ̂MMD2(P,Q)−MMD2(P,Q))√
V (P,Q)

→ N (0, 1).

where V (P,Q) is the asymptotic variance of
√

n × ( ̂MMD2(P,Q)).
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Behaviour of MMD when P = Q
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Behaviour of MMD when P = Q

n ̂MMD2(P,Q) has an asymptotic
distribution [Gretton, 2006]:

n ̂MMD2(P,Q) ∼ 2
∞∑
i=1

λi (z2
i −1)
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Behaviour of MMD when P = Q

n ̂MMD2(P,Q) has an asymptotic
distribution [Gretton, 2006]:

n ̂MMD2(P,Q) ∼ 2
∞∑
i=1

λi (z2
i −1)

zi are i.i.d. standard gaussians: zi ∼ N (0, 1)

λi are eigenvalues of the operator f 7→ EX∼P[K̃ (X ,X ′)f (X )]

K̃ the centered kernel:

K̃ (x , x ′) = 〈K (x , .)− µP,K (x ′, .)− µP〉H.
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A statistical test using MMD

T0 := n ̂MMD2(P,Q) ≈

{
nMMD2(P,Q) +

√
nN (0,V (P,Q)), P 6= Q

2
∑∞

i=1 λi (z2
i − 1), P = Q.

27 / 58



A statistical test using MMD

Fix a significance level α
(usually α = 0.05.)

If T0 ≥ cα, reject the
null, i.e. (P = Q
unlikely)

Otherwise, cannot reject
(P = Q is likely).

T0 := n ̂MMD2(P,Q) ≈

{
nMMD2(P,Q) +

√
nN (0,V (P,Q)), P 6= Q

2
∑∞

i=1 λi (z2
i − 1), P = Q.
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A statistical test using MMD

Fix a significance level α
(usually a small value:
0.05.)

If T0 ≥ cα, reject the
null, i.e. (P = Q
unlikely)

Otherwise, cannot reject
(P = Q is likely).

How can we tell if T0 := n ̂MMD2(P,Q) ≥ cα?

Let T be a r.v. under the null distribution: T ∼ 2
∑∞

i=1 λi (z2
i − 1).

If the p-value p := PT (T > T0) ≤ α, then T0 ≥ cα.

For T1, ...,TJ samples from the null: p≈|{j |Tj ≥ T0}|/J.

Can use a permutation test to construct T1, ...,TJ .
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A statistical test using MMD

For each permutation j set Tj=nMMD2(P̃, Q̃)
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A statistical test using MMD

For each permutation j set Tj=nMMD2(P̃, Q̃) 29 / 58



A statistical test using MMD

Fix a significance level α
(usually a small value:
0.05.)

If T0 ≥ cα, reject the
null, i.e. (P = Q
unlikely)

Otherwise, cannot reject
(P = Q is likely).

How can we tell if T0 := n ̂MMD2(P,Q) ≥ cα?

Let T be a r.v. under the null distribution: T ∼ 2
∑∞

i=1 λi (z2
i − 1).

If the p-value p := PT (T > T0) ≤ α, then T0 ≥ cα.

For T1, ...,TJ samples from the null: p≈|{j |Tj ≥ T0}|/J.

Can use a permutation test to construct T1, ...,TJ .
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Outline

1 Characterizing probabilities with kernels
Kernel mean embedding
The Maximum Mean Discrepancy

Applications (I): Statistical testing using the MMD
Applications (II): Learning generative models

Characteristic kernels
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Given samples from a distribution P over X , want a model that can
produce new samples from Q ≈ P

X ∼ P Y ∼ Q

EGM: Q has density q(Y ).

Support: the whole space.

Training using maximum
likelihood or score
matching.

Sampling using MCMC.

IGM: Y =G (Z ) ∼ Q with known Z∼µ.

Support: low dimensional
[Arjovsky 2017.

Training by minimizing some well
chosen divergence D(P,Q).

Sampling by pushing µ forward
with G .
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Generative Adversarial Networks

Many successful applications:

Single-image super-resolution

Why Worth Studying?  

• Image generation tasks 
– Example: single-image super-resolution 

 
 

Ledig et al 2015 
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Generative Adversarial Networks

Many successful applications:

Image to image translation

Why Worth Studying?  

• Image generation tasks 
– Example: Image-to-Image Translation 
– https://affinelayer.com/pixsrv/ 

 

Isola et al 2016 
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Generative Adversarial Networks

Many successful applications:

Text to image generation

Why Worth Studying?  

• Image generation tasks 
– Example: Text-to-Image Generation 

 

Zhang et al 2016 
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Adversarial training [Goodfellow 2014]

Divergence D(P,Q) defined by maximizing a variational objective G:

D(P,Q) := sup
f ∈F
G(f ,P,Q)

Critic: maximizes G(f ,P,Q) over f ∈ F to find optimal critic f ?.

Generator: minimizes D(P,Q)=G(f ?,P,Q) over Q.

Recover the MMD when F is the unit ball in an RKHS H.
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Learning generative models using MMD

Goal is to solve the optimization problem:

min
θ

MMD2(P,Qθ)
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Learning generative models using MMD

Goal is to solve the optimization problem:

min
θ

MMD2(P,Qθ)

1 Sample a mini-batch of i.i.d samples X1, ...,XB ∼ P from data-set.

2 Sample a mini-batch of i.i.d. latent noise Z1, ...,ZB ∼ µ.

3 Generate IGM samples Yb = Gθ(Zb) ∼ Qθ for 1 ≤ b ≤ B.

4 Compute empirical loss L̂(θ) := M̂MD2(P,Qθ). (Differentiable in θ)

5 Update parameters of the model using SGD:

θ ← θ − γ∇L̂(θ).
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Learning generative models using MMD

IGM trained using an RBF kernel on MNIST dataset.

In practice, choice of the kernel is crucial for good performance.
Hard to design a kernel for high dimensional data like images.
Why not learning it?
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Learning generative models using MMD

Goal is to solve the optimization problem:

min
θ

sup
k∈K

MMD2
k (P,Qθ)

K is a family of kernels,

ex: parmaterized by a neural network:

k(x , y) = h(ϕ(x), ϕ(y))

where ϕ is a NN and h is a fixed p.d. kernel.

Adaptively select an MMD that best discriminates between P and
current model Q.

In practice, alternate between gradient steps on k and on θ:
(Adversarial training).
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Learning generative models using MMD

IGM trained on MNIST dataset.
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Learning generative models using MMD

IGM trained on CelebA dataset.

[A., Sutherland , Binkowski and Gretton, 2018]
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Learning generative models using MMD

IGM trained on CelebA dataset.

[A., Sutherland , Binkowski and Gretton, 2018]

More to the story: regularization, stability in optimization,
evaluation, etc
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Summary

It is possible to represent probability distributions using kernels
through the concept of mean embeddings.

The maximum mean discrepancy (MMD), allows to compare
probabilities by comparing their mean embeddings.

MMD can be used for various applications:

Two sample tests
Learning implicit generative models (like GANs)

Other applications include

Dependence detection
Feature selection
Bling source separaion (e.g. ICA)

Often assume good kernels which do not discard information about
distributions: characteristic kernels.
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Outline

1 Characterizing probabilities with kernels
Kernel mean embedding
The Maximum Mean Discrepancy
Characteristic kernels
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Can mean embeddings characterize probabilities?

Question: Given two probability distributions P and Q with mean
embeddings µP and µQ, can we confidently tell if P and Q are different
or not based only on the summary given by µP and µQ?
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or not based only on the summary given by µP and µQ?

Example 1: Linear kernel K (x , x ′) = x>x ′.

Compare

µP(x) = EX∼P[X ]>x

6=
µQ(x) = EX∼Q[X ]>x
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Can mean embeddings characterize probabilities?

Question: Given two probability distributions P and Q with mean
embeddings µP and µQ, can we confidently tell if P and Q are different
or not based only on the summary given by µP and µQ?

Example 2: Polynomial kernel K (x , x ′) = (x>x ′)2.

µP(x) = Tr(EX∼P[XX>]xx>)

6=
µQ(x) = Tr(EX∼Q[XX>]xx>)
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Can mean embeddings characterize probabilities?

Question: Given two probability distributions P and Q with mean
embeddings µP and µQ, can we confidently tell if P and Q are different
or not based only on the summary given by µP and µQ?

Example 2: Polynomial kernel of order 2: K (x , x ′) = (x>x ′)2.

µP(x) = Tr(EX∼P[XX>]xx>)

=

µQ(x) = Tr(EX∼Q[XX>]xx>)

41 / 58



Can mean embeddings characterize probabilities?

Question: Are there kernels for which two mean embeddings µP and µQ
are equal iff P = Q?
Example 3: Exponential kernel K (x , y) = exp(x>y).

µP(y) = EX∼P[exp(X>y)]
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Can mean embeddings characterize probabilities?

Question: Are there kernels for which two mean embeddings µP and µQ
are equal iff P = Q?
Example 3: Exponential kernel K (x , y) = exp(x>y).

µP(y) = EX∼P[exp(X>y)]︸ ︷︷ ︸
Moment generating function

Classical result: If two probability distributions P and Q have the same
moment generating functions, then P = Q, meaning that:

EX∼P[f (X )] = EY∼Q[f (Y )], ∀f ∈ Cb(X ).
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Classical result: If two probability distributions P and Q have the same
moment generating functions, then P = Q, meaning that:

EX∼P[f (X )] = EY∼Q[f (Y )], ∀f ∈ Cb(X ).

Intuitively: The RKHS and, in particular, the set of functions
{Ky : x 7→ exp(x>y)}y∈X is rich enough so that
EP[Ky (X )] = EQ[Ky (X )] for all y ∈ X guarantees that P = Q.
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Characteristic kernels

Definition

Let X be a topological set and P the set of Borel probability measures
on X . Consider a bounded measurable p.d. kernel K defined on X and
let H be its RKHS. The kernel K is said to be characteristic if the map
P 3 P 7→ µP = EX∼P[KX ] ∈ H is injective, i.e.:

∀P,Q ∈ P : µP = µQ =⇒ P = Q.

Equality of mean embeddings ⇐⇒ equality of expectations of
functions in H, i.e.:

µP = µQ ⇐⇒ EX∼P[f (X )] = EY∼Q[f (Y )], ∀f ∈ H

Equality of probability distributions ⇐⇒ Equality of expectations
of continuous and bounded functions on X , i.e.:

P = Q ⇐⇒ EX∼P[f (X )] = EY∼Q[f (Y )], ∀f ∈ Cb(X ).

A kernel K is characteristic if RKHS H is rich enough!
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Characteristic kernels via Universality

Definition

Let K be a p.d. kernel with RKHS H on a compact set X . K is universal
if y 7→ K (x , y) is continuous for all x ∈ X and H is dense in C(X ) in the
maximum norm ‖.‖∞.

Proposition

Assume X is compact. If K is universal, then K is characteristic.

proof: Let P and Q such that µP = µQ. We need to show that

EX∼P[f (X )] = EY∼Q[f (Y )], ∀f ∈ C(X ).

Fix f ∈ C(X ). By universality of K , H is dense in C(X ) in the sup norm.
Hence, for any ε > 0, there exists g ∈ H such that ‖f − g‖∞ ≤ ε.
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Characteristic kernels via Universality

Proof Next we make the expansion

|EX∼P[f (X )]− EY∼Q[f (Y )]| ≤|EX∼P[f (X )]− EX∼P[g(X )]|
+ |EY∼Q[f (Y )]− EY∼Q[g(Y )]|
+ |EX∼P[g(X )]− EY∼Q[g(Y )]|.

The first two terms are upper-bounded by ε by definition of g .The last
term is equal to 0 since EX∼P[g(X )]− EY∼Q[g(Y )] = 〈g , µP − µQ〉H
and µP = µQ by assumption.
Hence, we have shown that for any ε > 0:

|EX∼P[f (X )]− EY∼Q[f (Y )]| ≤ 2ε

directly implying that |EX∼P[f (X )]− EY∼Q[f (Y )]| = 0.
The above holds for any f ∈ C(X ), meaning that P = Q.

45 / 58



Criteria for Universality

Proposition

Let 0 < r ≤ ∞ and f : (−r , r)→ R be a C∞ function that admits an
expansion as a Taylor series in 0: f (x) =

∑∞
i=0 aix

i . Let X be a compact
set in the open centered ball in Rd of radius

√
r . If ai > 0 for all i ≥ 0,

then k(x , y) = f (〈x , y〉) defines a universal kernel on X .

Example 1: Exp kernel: K (x , y) = exp 〈x , y〉 on any compact X .

f (x) = exp(x) =
∞∑
i=0

1

i !
x i , K (x , y) = f (〈x , y〉).

Example 2: Gaussian kernel on the Unit Sphere
K (x , y) = exp (−1

2‖x − y‖2).

f (x) = e−1 exp(x) = e−1
∞∑
i=0

1

i !
x i , K (x , y) = f (〈x , y〉).
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Criteria for Universality

Proposition (Steinwart 2001)

Let f : [0, 2π]→ R be a continuous function that can be expanded in a
pointwise absolutely convergent Fourier series: f (t)=

∑∞
n=0 ancos(nt).

If an > 0 for all n ≥ 0, then the Kernel K (x , y):=
∏d

i=1 f (|xi − yi |)
defines a universal kernel on every compact subset of [0, 2π)d .

Example 1: The stronger regularized Fourier kernel (Vapnik 1998, p.470)

k(x , y) = (1− q2)/(2− 4qcos(x − y) + 2q2)

for any 0 < q < 1.

47 / 58



Just in case ...

Definition

Let A be a vector space and × : A× A→ A be a binary operation on A.
Then A is an algebra if × is bilinear, i.e. for all x , y , z ∈ A and a, b ∈ R:

z × (x + y) = z × x + z × y

(x + y)× z = x × z + y × z

(ax)× (by) = (ab)(x × y).

Theorem: Stone-Weierstrass

Let (X , d) be a compact metric space and A a linear subspace of C(X ).
Then A is dense in C(X ) if

A is an algebra for the product of functions.

A does not vanish: For all x ∈ X , there exists f ∈ A s.t. f (x) 6= 0.

A separates points: For all x , y ∈ X with x 6= y , there exists f ∈ A,
s.t. f (x) 6= f (y).
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General criterion for Universality

Theorem: General criterion for universality (Steinwart, 2001)

Let X be a compact metric space and k be a continuous kernel on X
with k(x , x) > 0. Suppose there is an injective map Φ(x) = {ϕi (x)}i≥0

such that k(x , y) =
∑∞

i=0 ϕi (x)ϕi (y). If the set A := span{ϕi |i ≥ 0} is
an algebra, then k is universal.

Proof:

A is a subset of C(X ). Follows by continuity of the map x 7→ Φ(x).
Indeed, ‖Φ(x)−Φ(y)‖2=K (x , x)+K (y , y)−2K (x , y)≤ε for any
ε > 0 provided that y is close enough to x since K is continuous.

A does not vanish. Otherwise, we can find x such that ϕi (x) = 0 for
all i ≥ 0, meaning that K (x , x) = 0: contradicts K (x , x) > 0.

A separates points. Otherwise, there exists x , y with x 6=y and
ϕi (x)=ϕi (y) for all i≥0, hence Φ(x)=Φ(y): contradicts Φ injective.

Hence A is dense in C(X ) by Stone-Weierstrass theorem.
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General criterion for Universality

Theorem: General criterion for universality (Steinwart, 2001)

Let X be a compact metric space and k be a continuous kernel on X
with k(x , x) > 0. Suppose there is an injective map Φ(x) = {ϕi (x)}i≥0

such that k(x , y) =
∑∞

i=0 ϕi (x)ϕi (y). If the set A := span{ϕi |i ≥ 0} is
an algebra, then k is universal.

Proof Continued: Let f ∈ C(X ) and ε > 0.

Since A is dense in C(X ), there exists g ∈ A s.t. ‖f − g‖∞ < ε.

By definition of A, the function g is of the form g(x)=〈w ,Φ(x)〉l2
with w = (wi )i≥0 s.t. wi = 0 for any i > N for some N <∞.

Hence, g belongs to the unique RKHS H of K . This shows that H
is dense in C(X ), hence K is universal.
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Criteria for Universality

Proposition

Let 0 < r ≤ ∞ and f : (−r , r)→ R be a C∞ function that admits an
expansion as a Taylor series in 0: f (x) =

∑∞
i=0 aix

i . Let X be a compact
set in the open centered ball in Rd of radius

√
r . If ai > 0 for all i ≥ 0,

then k(x , y) = f (〈x , y〉) defines a universal kernel on X .

Proof: For simplicity, take d = 1.

K is continuous and of the form:

K (x , y) :=
∞∑
i=0

aix
iy i = 〈Φ(x),Φ(y)〉l2

with Φ(x) = (
√

aix
i )i≥0 which is injective.

K (x , x)=
∑∞

i=0 aix
2i>0 since ai > 0 for all i ≥ 0.

A:=span({ϕn|n ≥ 0}) is the algebra of polynomials.

Hence K universal by the general criterion for universality.
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Criteria for Universality

Proposition (Steinwart 2001)

Let f : [0, 2π]→ R be a continuous function that can be expanded in a
pointwise absolutely convergent Fourier series: f (t)=

∑∞
n=0 ancos(nt).

If an > 0 for all n ≥ 0, then the Kernel K (x , y):=
∏d

i=1 f (|xi − yi |)
defines a universal kernel on every compact subset of [0, 2π)d .

Proof: For simplicity, take d=1.

K is continuous and of the form:

K (x , y)=a0+
∞∑
n=0

an(sin(nx)sin(ny)+cos(nx)cos(ny)) = 〈Φ(x),Φ(y)〉l2

where Φ(x)=(ϕn(x))n≥0 defined by ϕ0(x) = a0, ϕ2n−1=
√

ansin(nx)
and ϕ2n(x) =

√
ancos(nx) for n ≥ 1 is injective.

K (x , x)=
∑∞

n=0 an>0 since an > 0 for all n ≥ 0.

A:=span({ϕn|n ≥ 0}) is an algebra (by trigonometric identities).

Hence K universal by the general criterion for universality.
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Summary: Characteristic kernels via Universality

On a compact metric set X , a universal kernel is a continuous kernel
whose RKHS (H) is dense in C(X ) in the maximum norm.

Any universal kernel on X is characteristic, i.e. the mean embedding
map P 7→ µP=EX∼P[KX ] ∈ H defined on the set P of probability
distributions on X is injective:

∀P,Q ∈ P : µP = µQ =⇒ P = Q.

Can construct a large class of universal kernels using Taylor series or
Fourier series with positive coefficients.

Both constructions follow from the General criterion for universality,
itself a consequence of Stone-Weierstrass theorem for compact
metric sets.

Question: What if X is not compact?
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Characteristic kernels via Fourier transform

Consider a translation invariant kernel K on Rd of the form
K (x , y)=κ(x − y) with κ : Rd → R.
Bochner’s theorem implies the existence of a finite non-negative
Borel measure Λ on Rd such that κ(z) =

∫
e−iz

>wdΛ(w).
Can express K as a Hermitian product in L2(Λ) of Fourier features:

K (x , y) = 〈Φ(x),Φ(y)〉L2(Λ), w 7→ Φ(x)(w) = e−ix
>w

Can express the mean embedding µP in terms of
F(P)=EX∼P[Φ(X )] the of Fourier transform of P:

µP(y) = EX∼P[〈Φ(X ),Φ(y)〉L2(Λ)] = 〈F(P),Φ(y)〉L2(Λ)

Fourier inversion theorem (Dudley 2002, Theorem 9.5.4)

If P and Q are two probability distributions on Rd with the same Fourier
transform: F(P)=F(Q), then P=Q.

The measure Λ must ”preserve information contained” in the Fourier
transform F(P).
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Characteristic kernels via Fourier transform

Translation invariant characteristic kernels: (Sriperumbudur 2008)

Let K be a translation invariant kernel on Rd of the form
K (x , y)=κ(x − y) with κ(z) =

∫
e−iz

>wdΛ(w) for some finite
non-negative Borel measure Λ on Rd . The kernel K is characteristic if
and only if supp (Λ) = Rd .

Example 1: Gaussian kernel K (x , y) = e−
σ2

2
‖x−y‖2

. The measure Λ is a

gaussian on Rd with density w 7→
√

2πσ2e−
1

2σ2 ‖w‖2

. Since
supp(Λ) = Rd , K is characteristic.

Example 2: Let κ(z) = ‖z‖−
d
2 Jd/2(‖z‖), where Jp is Bessel’s function of

the first kind. Then K (x , y) = κ(x − y) is not characteristic: Λ is the
uniform distribution on the unit ball.
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Characteristic kernels via Fourier transform

Bochner’s theorem: A translation invariant kernel on Rd is
characterized by unique finite non-negative measure Λ

Main result: K is characteristic if and only if supp(Λ) = Rd .

Similar reasoning can be applied to any space where Bochner’s
theorem holds:

Locally compact Abelian groups
Compact, non-Abelian groups (orthogonal matrices)
The semigroup Rd

+.
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Characteristic kernels: Summary

Definition

Let X be a topological set and P the set of Borel probability measures
on X . Consider a bounded measurable p.d. kernel K defined on X and
let H be its RKHS. The kernel K is said to be characteristic if the map
P 3 P 7→ µP = EX∼P[KX ] ∈ H is injective, i.e.:

∀P,Q ∈ P : µP = µQ =⇒ P = Q.

Criteria for characteristic kernels

On a compact set X , can use criteria for universality: A kernel is
universal if it continuous and its RKHS is dense in C(X ).

If K admits a Taylor expansion with positive coefficients.
If K admits a Fourier expansion with positive coefficients.

If X = Rd and K is translation invariant with associated
non-negative measure Λ: K characteristic ⇐⇒ supp (Λ) = Rd
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