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Introduction

@ We have seen how to represent each individual data-point by an
embedding in some feature space.

@ This allows to compare data points by evaluating the kernel.

@ Now we are interested in comparing two or more sets of data-points,
or more generally distributions of data points.
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Motivation |: Comparing two distributions

o Data: Samples from unknown distributions P and Q.
o Goal: do P and Q differ?

Differences between dogs and fish.
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Motivation |: Comparing two distributions

@ Data: Samples from unknown distributions P and Q.
@ Goal: do P and Q differ?

LFP near spike burst LFP without spike burst

LFP amplitude
LFP amplitude
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Difference in brain signals: Do local field potential (LFP) signals change
when measured near a spike burst?
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Motivation |: Comparing two distributions

@ Data: Samples from unknown distributions P and Q.

@ Goal: do P and Q differ?

LFP amplitude

Neural data, n=50
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Neural data, n=500
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Difference in brain signals: Do local field potential (LFP) signals change
when measured near a spike burst?

/58



Motivation |: Comparing two distributions

@ Data: Samples from unknown distributions P and Q.
@ Goal: do IP and Q differ?
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Motivation |l: Detecting dependence

Xl: Honourable senators, [ have a guestion for
the Leader of the Government in the Senate with
regard to the support funding to farmers that has
been announced. Most farmers have not received
any money yet.

X2: No doubt there is great pressure on provin-
cial and municipal governments in relation to the
issue of child care, but the reality is that there
have been no cuts to child care funding from the
federal government to the provinces. In fact,
we have increased federal investments for early
childhood development.

}’1: Honorables sénateurs, ma gquestion
s’adresse au leader du gouvernement an Sénat
et concerne l'aide financiére qu'on a annoncée
pour les agriculteurs. La plupart des agriculteurs
n’ont encore rien reu de cet argent.

}’2:11 est évident que les ordres de gouverne-
ments provinciaux et municipaux subissent de
fortes pressions en ce qui concerne les ser-
vices de garde, mails le gouvernement n'a pas
réduit le financement qu’il verse aux provinces
pour les services de garde. Au contraire, nous
avons augmenté le financement fédéral pour le
développement des jeunes enfants.
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Motivation |l: Detecting dependence
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Motivating questions

@ Comparing distributions in high dimensions, low sample size and
"complex” structure.
o Detecting dependence in high dimensional data

o Feature selection
e Blind source separation.
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Outline

@ Characterizing probabilities with kernels
o Kernel mean embedding
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Feature mean difference

@ Simple example: Samples from 2 Gaussians with same means but

different variance.

@ ldea: Look at difference in means of features of the samples.

Prob. density

Two Gaussians with different means
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Feature mean difference

@ Simple example: Samples from 2 Gaussians with same means but
different variance.

o ldea: Look at difference in means of features of the samples. Here
p(x) = (x,x%).

Two Gaussians with different variances
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Feature mean difference

@ Simple example: Centered Gaussian and Laplace distributions: same
mean and variance.
o ldea: Look at difference in means of high order features of the
samples: ¢(x) = (x,x?,...) (RKHS).
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Gaussian and Laplace densities

Compare
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Kernel Mean Embedding

Definition

Given a kernel K defined on a topological set X with corresponding
RKHS #H, the mean embedding of a Borel probability distribution P on X
is the function up : X — R in H defined as

pe(y):=Ex-p[K(X,y)]
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Kernel Mean Embedding

Definition

Given a kernel K defined on a topological set X with corresponding
RKHS #H, the mean embedding of a Borel probability distribution P on X
is the function up : X — R in H defined as

pe(y):=Ex~p[K(X,y)]
e Forany x, x' in X,

K(X7X/) = <KX> Kx’)'Ha

@ The kernel trick:
Forany f € H and x € X,

fF(x) = (f, K
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Kernel Mean Embedding

Definition

Given a kernel K defined on a topological set X with corresponding
RKHS #H, the mean embedding of a Borel probability distribution P on X
is the function up : X — R in H defined as

pe(y):=Ex-p[K(X,y)]

e Forany x, X' in X, @ For any Borel measure P and Q,
K(X7X/) = <KX7 Kx’)'Ha E(X7y)NP’@K(X, Y) = </L[p>,,U,Q>H,
@ The kernel trick: @ The generalized kernel trick:
Forany f € H and x € &, For any f € H and Borel measure P,

f(X) = <f7 KX)H EXNIP[f(X)] = <f>M]P’>’H
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Kernel Mean Embedding

Kernel Mean Embedding

The kernel mean embedding: pp = Exp[Kx]
The generalized kernel trick: Ex.p[f(X)] = (f, pp)y for all f € H.
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Kernel Mean Embedding

Kernel Mean Embedding
The kernel mean embedding: pp = Exp[Kx]

The generalized kernel trick: Ex.p[f(X)] = (f, pp)y for all f € H.

@ Mean embedding pp summarizes IP:
Can compute expectations under P of
all functions in H using pp.

@ In practice, you can estimate up using
N i.i.d. samples from P:

1

N
pe(x) = = S K(Xi,x), X "KP
i=1

=
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Kernel Mean Embedding

Kernel Mean Embedding

The kernel mean embedding: pp = Exp[Kx]
The generalized kernel trick: Ex.p[f(X)] = (f, pp)y for all f € H.

@ Mean embedding pp summarizes IP:
Can compute expectations under P of 0.03
all functions in H using pp.

Il Histogram
- Embedding

0.02
@ In practice, you can estimate up using
N i.i.d. samples from P:

0
X

fn(x) = ~

=

N
S K(Xix), XK
i=1
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Kernel Mean Embedding

Kernel Mean Embedding

The kernel mean embedding: pup = Exp[Kx]
The generalized kernel trick: Ex.p[f(X)] = (f, up)y for all f € H.

@ Mean embedding pup summarizes IP:
Can compute expectations under P of 0.03
all functions in H using pp.

Il Histogram
—Embedding

0.02
@ In practice, you can estimate up using
N i.i.d. samples from P: 0.01
0
N 1 & iid. -2 % 2
fip(x) = NZK(X;,X), X "= P

i=1

Does the mean embedding up exist? i.e. an element up € H such that
Ex~plf(X)] = (f, pp)3, VF € H.
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Existence of mean embeddings

Proposition
Let P be a Borel probability distribution on a set X endowed with its
Borel sigma algebra. Let K be a p.d. kernel defined on X with

corresponding RKHS H. Assume that Exp[\/K(X, X)] < co. Then
there exits a unique element up € H such that

Ex~p[f(X)] = (f, pp)3, Vf € H.
In particular, for any y € X, it holds that:

pe(y) = (Ky, up) = Ex~p[K(X,y)].
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Existence of mean embeddings

Proposition

Let P be a Borel probability distribution on a set X endowed with its
Borel sigma algebra. Let K be a p.d. kernel defined on X’ with
corresponding RKHS H. Assume that Ex.p[\/K(X, X)] < co. Then
there exits a unique element up € H such that

Ex~plf (X)] = (f, up)n, Vf € H.

In particular, for any y € X, it holds that:

pe(y) = (Ky, up) = Ex~p[K(X,y)].

Proof:
The linear form on H: Tpf = Ex..p[f(X)] is bounded by assumption:

| Tef| < Ex~p[[f (X)|] = Ex~pl|(f, Kx)3l] < Ex~plv/ KX, X)[Il2].
Hence, by Riesz's theorem, there exists up € H such that Tpf=(f, up)y.
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Outline

@ Characterizing probabilities with kernels

@ The Maximum Mean Discrepancy
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Motivation: Comparing two distributions

@ Data: Samples from unknown distributions P and Q.
@ Goal: do P and Q differ?

Differences between dogs and fish.
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The Maximum Mean Discrepancy

The maximum mean discrepancy (MMD) is the RKHS distance between
mean embeddings:

MMD*(P, Q) =||up — poll3,
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The Maximum Mean Discrepancy

The maximum mean discrepancy (MMD) is the RKHS distance between
mean embeddings:

MMD?(P, Q) =|up — poll3
=(pp, )y + (o, ho)H — 2(up, o)1
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The Maximum Mean Discrepancy

The maximum mean discrepancy (MMD) is the RKHS distance between
mean embeddings:

MMD?(P,Q) =||up — o3,
=(up, pp)n + (1o, p)H — 2(up, po)H
=Ex x/~pep[k(X, X')] + Ey y~oeolk(Y, Y')]
—2Ex y~reolk(X, Y)]
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The Maximum Mean Discrepancy

The maximum mean discrepancy (MMD) is the RKHS distance between
mean embeddings:

MMD?(P, Q) =||up — poll3
=(up, pip)H + (1Q, HQ)H — 2(up, HO)H
=Ex x'~pep[k(X, X')] + Ey yoeolk(Y, Y')]
— 2Ex,y~paolk(X, Y)]

o Intra-similarity terms : Ex x/.pgp[k(X, X’)] and
Ey,y~oeolk(Y, Y')].

o Inter-similarity term: Ex v pgolk(X, Y)].

@ In general, MMD is a semi-metric: (MMD(P,Q) =0 % P = Q).

@ For some kernels (called characteristic kernels), MMD is a metric
(MMD(P,Q) =0 < P=0Q).

@ From now on, we assume MMD is a metric. Later, we'll say more
about characteristic kernels. 18/58



Unbiased esitimation of the MMD

@ Data: i.i.d. samples from P and Q
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Unbiased esitimation of the MMD

@ Data: i.i.d. samples from P and Q

R
= I

“»

! K{dogy fsh,)

K(ishy.dog,) |

Biased estimate of the MMDZ'

MMD2(P, Q) = ZK(dog,, dog;) + Z K(fish;, fish;)
ij iJ

2 .
~ M Z k(dog;, fish;)
i
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Unbiased esitimation of the MMD

@ Data: i.i.d. samples from P and Q

Tyt = I

>

”e dog;, dog;) k(dog,, fish;)

- .----- vz

iy dog,) |

Unbiased estimate of the MMD?:
— 1 1 . .
MMD2(P, Q) = O > K(dog;, dogj) + M) > K(fish;, fish;)
i#j i#j

2 .
~ N Z k(dog;, fish;)
N}
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MMD as an Integral Probability Metric

Integral Probability Metric

Let F be a set of measurable functions. An integral probability metric
associated to the class F is a semi-metric defined as

Dr(P,Q) := fS_lE.I-I;:EXN]p[f(X)] — Ey~olf(Y)]-
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MMD as an Integral Probability Metric

Integral Probability Metric

Let F be a set of measurable functions. An integral probability metric
associated to the class F is a semi-metric defined as

Dr(P,Q) := sup Exp[f(X)] — Ey~g[f(Y)]
feF
e MMD obtained by choosing F = {f € H|||f|l» < 1}:

MMD(P, Q) := ?gz Ex~p[f(X)] = Ev~olf(Y)]

[flla<1
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MMD as an Integral Probability Metric

Integral Probability Metric

Let F be a set of measurable functions. An integral probability metric
associated to the class F is a semi-metric defined as

Dx(P,Q) := iggExw[f(X)] —Evolf(Y)].

e MMD obtained by choosing F = {f € H|||f|l» < 1}:
MMD(P, Q) := sup Ex~p[f(X)] = Ey~olf(Y)]
€

[flla<1

@ Other choices for the set F:

e Bounded continuous — Dudley's metric.
o Bounded variations — Kolmogorov metric.
o Bounded Lipschitz — 1-Wasserstein distance.
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MMD as an Integral Probability Metric
@ MMD obtained by choosing F = {f € H|||f|lx < 1}:
MMD(P, Q) = sup Ex~p[f(X)] = Ev~qlf(Y)]
S
[IFl#<1

Smooth function
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MMD as an Integral Probability Metric

e MMD obtained by choosing F = {f € H|||f|l% < 1}:

MMD(P, Q) = fgft Ex~p[f(X)] = Ey~ol[f(Y)]
1]l <1
= sup (f,pup — po)n

feH
[flla<1

2\
&
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MMD as an Integral Probability Metric

e MMD obtained by choosing F = {f € H|||f|l% < 1}:

/\'\Q
b*“‘ba\\ o
MMD(P,Q) = sup Ex~p[f(X)] = Ey~o[f(Y)] / A
||f||7-t<1
= sup (f,up— Ho)nu K/
e
=(f*, up — pQ)n e _HMPT RO
[ e — poll

f* is called the
witness function
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Outline

@ Characterizing probabilities with kernels

@ The Maximum Mean Discrepancy
@ Applications (I): Statistical testing using the MMD
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A statistical test using MMD

For simplicity assume same number of samples from P and Q:

MMD2(P, Q) = NN D) > K(xi, %) ZK Yis¥j)
lsﬁJ l;ﬁJ

- WZK(XHYJ)
iJ

@ Null hypothesis hg when P = Q.
MM%, Q) should be close to zero.

@ Alternative hypothesis h; when P = Q).
MM%, Q) should be far away from zero.

@ What do close or far away mean here?
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Behaviour of MMD when P # Q

Prob. of \/n x MMD

15

o
wn
T

I =rpirical PDF

s Gaussian fit

05 1

15 2
—_ 2
Vv x MMD

25

3.5
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Behaviour of MMD when P # Q

15 : : : : =,

I Epirical PDF

m——— Gaussian fit

Prob. of \/n x MMD

bt
3]
T

0
0 05 1 15 2 25 3 3.5

Vi x MMD

The statistic MME2(\]P’,Q) is asymptotically normal [Gretton, 2006]:

—

Va(MMD?(P, Q) — MMD?(P, Q))

JVED) — N(0,1).

where V(P, Q) is the asymptotic variance of v/n x (MMD?(P,Q)).

25 /58



Behaviour of MMD when P = Q

0.6 - — x? sum ]
: I Empirical PDF

2

Prob. of n x MM D
o
~

o
N

-2 0 2 4 6
n X ]M/]\?D2
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Behaviour of MMD when P = Q

06 —x? sum |
: I Empirical PDF —

nMMD?(P, Q) has an asymptotic
distribution [Gretton, 2006]:

2

Prob. of n x MM D
o
~

°
N

nMMD2(P, Q) ~ 23" \i(z7 —1)
i=1

-2 0 2 4 6
n X ]M/]\?D2
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Behaviour of MMD when P = Q

—— 2
0.6 of i 1
I Empirical PDF

2

—

nMMD?(P, Q) has an asymptotic
distribution [Gretton, 2006]:

°
N

nMMD2(P, Q) ~ 23" \i(z7 —1)
i=1

Prob. of n x MM D
o
~

-2 0 2 4 6
n X AI?\?DZ

@ z; are i.i.d. standard gaussians: z; ~ A(0,1)

e \; are eigenvalues of the operator f — Ex.p[K(X, X)f(X)]
o K the centered kernel:

R(val) = (K(x,.) — pp, K(X/v D) — Hp)H-
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A statistical test using MMD

2

Prob. of n x MMD

n X ]\/sz

— MMD?(P 0, V(P P
To = AMMD2(E, 0) ~ {gzw ;-(;(2@)—+1>ﬁN( V) P20
i=1"M\~“ ) — -
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A statistical test using MMD

0.7

=
3

2

o Fix a significance level

(% . (usually o = 0.05.)
. o If Ty > c,, reject the
b null, i.e. (P=0Q

£ unlikely)

@ Otherwise, cannot reject
—_— (P =Q is likely).

2
nx MMD

—— MMD? (P V(P P
i=1 "M\~ ) = .
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A statistical test using MMD

0.7

=
3

—r.o © Fixasignificance level o
(usually a small value:

2

Q o5+

(= 0.05.)

= ol _

. o If Tg > c,, reject the
S 03 . _

,g‘ ¢a = 1 — a quantile when P = Q nu”' I.€. (]P) - Q

= unlikely)

@ Otherwise, cannot reject
— (P =Q is likely).

nx MMD’
How can we tell if Ty := nl\/ll\/l@, Q) > c.?

o Let T be a r.v. under the null distribution: T ~ 2% \;(z? —1).

o If the p-value p:=P7(T > Ty) < «, then Ty > c,.

e For Ty,..., T; samples from the null: p=|{j|T; > To}|/J.

Can use a permutation test to construct Ty, ..., 7.
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A statistical test using MMD
Original empirical MMD for dogs and fish:

X =%t W ... ]
mz :ﬁ ;k(:&,ﬂa)

1
* a1 & "0

2
i 7 Z k($i1YJ)
1,J

For each permutation j set Tj=nMMD?(P, Q)
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A statistical test using MMD

Permuted dog and fish samples (merdogs):

X:[ 2 'f-’w .
5

Permutation simulates
P=Q
For each permutation j set Ti=nMMD?(P, @)
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A statistical test using MMD

0.7

=
3

—r.o © Fixasignificance level o
(usually a small value:

2

Q o5+

(= 0.05.)

= ol _

. o If Tg > c,, reject the
S 03 . _

,g‘ ¢a = 1 — a quantile when P = Q nu”' I.€. (]P) - Q

= unlikely)

@ Otherwise, cannot reject
— (P =Q is likely).

nx MMD’
How can we tell if Ty := nl\/ll\/l@, Q) > c.?

o Let T be a r.v. under the null distribution: T ~ 2% \;(z? —1).

o If the p-value p:=P7(T > Ty) < «, then Ty > c,.

e For Ty,..., T; samples from the null: p=|{j|T; > To}|/J.

Can use a permutation test to construct Ty, ..., 7.
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Outline

@ Characterizing probabilities with kernels

@ The Maximum Mean Discrepancy

@ Applications (I1): Learning generative models
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Given samples from a distribution P over X', want a model that can
produce new samples from Q ~ P
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Given samples from a distribution P over X', want a model that can
produce new samples from Q ~ P

EGM: Q has density g(Y).
@ Support: the whole space.

e Training using maximum
likelihood or score
matching.

e Sampling using MCMC.
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Given samples from a distribution P over X', want a model that can
produce new samples from Q ~ P

EGM: Q has density g(Y). IGM: Y=G(Z) ~ Q with known Z~p.

@ Support: low dimensional
[Arjovsky 2017.

e Training by minimizing some well
chosen divergence D(P, Q).

e Sampling by pushing u forward
with G.

@ Support: the whole space.

e Training using maximum
likelihood or score
matching.

e Sampling using MCMC.

32/58



Generative Adversarial Networks

Many successful applications:

@ Single-image super-resolution

bicubic SRResNet
(21.59dB/0.6423) (23.44dB/0.7777)

Ledig et al 2015

SRGAN
(20.34dB/0.6562)
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Generative Adversarial Networks

Many successful applications:

@ Image to image translation

Labels to Street Scene

Labels to Facade

BW to Color

TITII

T v

input output

Day to Night

output
__ Edges to Photo

input

Isola et al 2016

output

output

output

33/
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Generative Adversarial Networks

Many successful applications:

@ Text to image generation

This small blue
bird has a short
pointy beak and
brown on its wings

This bird is
completely red
with black wings
and pointy beak

Zhang et al 2016
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Adversarial training [Goodfellow 2014]

Divergence D(IP, Q) defined by maximizing a variational objective G:

D(P,Q) := ?;‘fig(f’P’ Q)

o Critic: maximizes G(f,IP, Q) over f € F to find optimal critic f*.

e Generator: minimizes D(P, Q)=G(f*,P, Q) over Q.
@ Recover the MMD when F is the unit ball in an RKHS H.
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Learning generative models using MMD

Goal is to solve the optimization problem:

mgin MMD?(PP, Qy)
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Learning generative models using MMD

Goal is to solve the optimization problem:

wnMMD%RQ@

@ Sample a mini-batch of i.i.d samples Xi, ..., Xg ~ P from data-set.
@ Sample a mini-batch of i.i.d. latent noise 71, ..., Zg ~ p.
© Generate IGM samples Y}, = Gy(Zp) ~ Qg for 1 < b < B.

@ Compute empirical loss £(0) := /\WE(P, Qp). (Differentiable in 6)
© Update parameters of the model using SGD:

0« 0 —yVL(O).
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Learning generative models using MMD

IGM trained using an RBF kernel on MNIST dataset.

7101184/

HEFICIFIE]
Cv/73lY

Need better image features.

@ In practice, choice of the kernel is crucial for good performance.

@ Hard to design a kernel for high dimensional data like images.
@ Why not learning it?

36
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Learning generative models using MMD

Goal is to solve the optimization problem:

min sup MMDZ(IP, Qy)
0 kek

e /Cis a family of kernels,
e ex: parmaterized by a neural network:

k(x,y) = h(e(x),¢(y))

where ¢ is a NN and h is a fixed p.d. kernel.

o Adaptively select an MMD that best discriminates between P and
current model Q.

@ In practice, alternate between gradient steps on k and on 6:
(Adversarial training).
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Learning generative models using MMD

IGM trained on MNIST dataset.

Samples are better!



Learning generative models using MMD

IGM trained on CelebA dataset.

[A., Sutherland , Binkowski and Gretton, 2018]

38/58



Learning generative models using MMD

IGM trained on CelebA dataset.

[A., Sutherland , Binkowski and Gretton, 2018]

@ More to the story: regularization, stability in optimization,

evaluation, etc

38/58



Summary

@ It is possible to represent probability distributions using kernels
through the concept of mean embeddings.

@ The maximum mean discrepancy (MMD), allows to compare
probabilities by comparing their mean embeddings.

@ MMD can be used for various applications:

o Two sample tests
o Learning implicit generative models (like GANs)

Other applications include
o Dependence detection
o Feature selection
o Bling source separaion (e.g. ICA)

Often assume good kernels which do not discard information about
distributions: characteristic kernels.
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Outline

@ Characterizing probabilities with kernels

@ Characteristic kernels
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Can mean embeddings characterize probabilities?

Question: Given two probability distributions P and Q with mean
embeddings up and ug, can we confidently tell if P and Q are different
or not based only on the summary given by up and ug?
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Can mean embeddings characterize probabilities?

Question: Given two probability distributions P and Q with mean
embeddings up and ug, can we confidently tell if P and Q are different

or not based only on the summary given by up and ug?

Example 1: Linear kernel K(x,x') = x"x’.

Two Gaussians with different means

Compare

/J,P(X) = EXNP[X]TX
#
po(x) = Ex~o[X] '

Prob. density
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Can mean embeddings characterize probabilities?

Question: Given two probability distributions P and Q with mean
embeddings up and ug, can we confidently tell if P and Q are different

or not based only on the summary given by up and ug?

Example 1: Linear kernel K(x,x') = x"x’.

Two Gaussians with different variances

0.4

0.35

03

o
)
3

pp(x) = Exp[X] " x

po(x) = Exg[X] " x

Prob. density
2 o
v n

e
o

0.05
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Can mean embeddings characterize probabilities?

Question: Given two probability distributions P and Q with mean
embeddings up and ug, can we confidently tell if P and Q are different
or not based only on the summary given by up and ug?

Example 2: Polynomial kernel K(x,x") = (x'x')2.

Two Gaussians with different variances

0.4

0.35

03

Prob. density
2 e 8
v n [3,]

e
o

0.05

pip(x) = Tr(Ex-p[XX ]xx")
”
po(x) = TF(EXNQ[XXT]XXT)
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Can mean embeddings characterize probabilities?

Question: Given two probability distributions P and Q with mean

embeddings up and ug, can we confidently tell if P and Q are different

or not based only on the summary given by up and ug?

Example 2: Polynomial kernel of order 2: K(x,x') = (x"x")2.
Gaussian and Laplace densities

0.7

P

e
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Can mean embeddings characterize probabilities?

Question: Are there kernels for which two mean embeddings pp and 1
are equal iff P = Q7
Example 3: Exponential kernel K(x,y) = exp(x"y).

pe(y) = Explexp(X T y)]
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Can mean embeddings characterize probabilities?

Question: Are there kernels for which two mean embeddings pp and 1
are equal iff P = Q7
Example 3: Exponential kernel K(x,y) = exp(x"y).

pp(y) =  Explexp(XTy)]

Moment generating function

Classical result: If two probability distributions P and @ have the same
moment generating functions, then P = (), meaning that:

Ex~p[f(X)] =Ey~olf(Y)],  VfeCu(X).
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Can mean embeddings characterize probabilities?

Question: Are there kernels for which two mean embeddings pp and 1
are equal iff P = Q7
Example 3: Exponential kernel K(x,y) = exp(x"y).

pp(y) =  Explexp(XTy)]

Moment generating function

Classical result: If two probability distributions P and @ have the same
moment generating functions, then P = (), meaning that:

Ex~p[f(X)] =Ey~olf(Y)],  VfeCu(X).

Intuitively: The RKHS and, in particular, the set of functions
{K, : x + exp(x"y)}yex is rich enough so that
Ep[K,(X)] = Eg[K,(X)] for all y € X guarantees that P = Q.
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Characteristic kernels

Definition

Let X be a topological set and P the set of Borel probability measures
on X. Consider a bounded measurable p.d. kernel K defined on X and
let H be its RKHS. The kernel K is said to be characteristic if the map
P3P up =Exp[Kx| € H is injective, i.e.:

W,QGPZMPZ#@ = P=0Q.

o Equality of mean embeddings <= equality of expectations of
functions in H, i.e.:

pp = po = Exp[f(X)] =Eyglf(Y)], VFie#
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Characteristic kernels

Definition

Let X be a topological set and P the set of Borel probability measures
on X. Consider a bounded measurable p.d. kernel K defined on X and
let H be its RKHS. The kernel K is said to be characteristic if the map
P3P up =Exp[Kx| € H is injective, i.e.:

VP,QG’PZ,LL[[DZM@ = P=0Q.

o Equality of mean embeddings <= equality of expectations of
functions in H, i.e.:
pp = py = Exaplf(X)] = Eyoolf(Y)],  VFeH

o Equality of probability distributions <= Equality of expectations
of continuous and bounded functions on X, i.e.:

P=Q < Ex-pl[f(X)] = Eyg[f(Y)],  VfeClp(X).
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Characteristic kernels

Definition

Let X be a topological set and P the set of Borel probability measures
on X. Consider a bounded measurable p.d. kernel K defined on X and
let H be its RKHS. The kernel K is said to be characteristic if the map
P3P up =Exp[Kx| € H is injective, i.e.:

VP,QG’PZ,LL[[DZM@ = P=0Q.

o Equality of mean embeddings <= equality of expectations of
functions in H, i.e.:
pp = py = Exaplf(X)] = Eyoolf(Y)],  VFeH

o Equality of probability distributions <= Equality of expectations
of continuous and bounded functions on X, i.e.:

P=0Q «— Exwp[f(X)] = EyNQ[f(Y)], Vf € Cb(.)()
o A kernel K is characteristic if RKHS # is rich enough!
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Characteristic kernels via Universality

Definition

Let K be a p.d. kernel with RKHS H on a compact set X'. K is universal
if y — K(x,y) is continuous for all x € X and H is dense in C(X) in the
maximum norm ||.||cc-

Proposition
Assume X is compact. If K is universal, then K is characteristic.

proof: Let P and Q such that pp = pgp. We need to show that
EXNP[f(X)] = EYN@[f( Y)],Vf S C(X)

Fix f € C(X). By universality of K, H is dense in C(X) in the sup norm.
Hence, for any € > 0, there exists g € H such that ||f — g|loc < €.
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Characteristic kernels via Universality
Proof Next we make the expansion
[Ex~p[f(X)] = Ey~o[f(Y)]| <[Ex~p[f(X)] — Ex~plg(X)]|

+ [Eyo[f(Y)] = Evolg(Y)]|
+ [Ex~plg(X)] = Ey~glg(Y)]|-

The first two terms are upper-bounded by e by definition of g.The last
term is equal to 0 since Ex..p[g(X)] — Ev~olg(Y)] = (g, ur — 1o)n
and pp = pg by assumption.
Hence, we have shown that for any € > 0:

[Ex~p[f(X)] = Ey~o[f(Y)]] < 2¢

directly implying that |Exp[f(X)] — Eyo[f(Y)]| = 0.
The above holds for any f € C(X), meaning that P = Q.
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Criteria for Universality

Proposition

Let 0 <r<ooandf:(—r,r) — R bea C* function that admits an
expansion as a Taylor series in 0: f(x) =Y 2, ajx’. Let X be a compact
set in the open centered ball in RY of radius Vr. If a; >0 forall i >0,
then k(x,y) = f({x,y)) defines a universal kernel on X

Example 1: Exp kernel: K(x,y) = exp (x, y) on any compact X.
[e'e) 1 ,'
f(X):eXp(X):Z-*X’ K(X,y):f(<X,y>)

il
i=0

Example 2: Gaussian kernel on the Unit Sphere
K(x,y) = exp (—3llx = yI?).

(x) = e exp(x) Zl! L KGoy) = fllon).
=0
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Criteria for Universality

Proposition (Steinwart 2001)

Let f : [0,27] — R be a continuous function that can be expanded in a
pointwise absolutely convergent Fourier series: f(t)=3°, a,cos(nt).
If a, > 0 for all n > 0, then the Kernel K(x,y)::]_[:-j:1 f(|xi — yil)
defines a universal kernel on every compact subset of [0,27)9.

Example 1: The stronger regularized Fourier kernel (Vapnik 1998, p.470)
k(x,y) = (1~ ¢%)/(2 - 4qcos(x — y) + 24°)

forany 0 < g < 1.
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Just in case ...

Definition
Let A be a vector space and x : A x A — A be a binary operation on A.
Then A is an algebra if x is bilinear, i.e. for all x,y,z € A and a,b € R:

zxX(x+y)=zXxx+zxy
(x+y)xz=xxz+yxz
(ax) x (by) = (ab)(x x y).

Theorem: Stone-Weierstrass

Let (X, d) be a compact metric space and A a linear subspace of C(X).
Then A is dense in C(X) if

@ Ais an algebra for the product of functions.
@ A does not vanish: For all x € X, there exists f € As.t. f(x) # 0.
@ A separates points: For all x,y € X with x # y, there exists f € A,

s.t. f(x) # f(y).
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General criterion for Universality

Theorem: General criterion for universality (Steinwart, 2001)

Let X be a compact metric space and k be a continuous kernel on X
with k(x,x) > 0. Suppose there is an injective map ®(x) = {¢i(x)}i>o
such that k(x,y) = > 720 @i(x)pi(y). If the set A := span{yp;|i > 0} is
an algebra, then k is universal.

Proof:

@ Ais a subset of C(&X'). Follows by continuity of the map x — ®(x).
Indeed, [|®(x)—P(y)|?=K(x,x)+K(y,y)—2K(x,y)<e for any
€ > 0 provided that y is close enough to x since K is continuous.

@ A does not vanish. Otherwise, we can find x such that ¢;(x) = 0 for
all i > 0, meaning that K(x,x) = 0: contradicts K(x, x) > 0.

@ A separates points. Otherwise, there exists x, y with x#y and
wi(x)=wi(y) for all i>0, hence ®(x)=P(y): contradicts P injective.

Hence A is dense in C(X') by Stone-Weierstrass theorem.
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General criterion for Universality

Theorem: General criterion for universality (Steinwart, 2001)

Let X be a compact metric space and k be a continuous kernel on X
with k(x,x) > 0. Suppose there is an injective map ®(x) = {¢i(x)}i>o
such that k(x,y) = > 720 @i(x)pi(y). If the set A := span{yp;|i > 0} is
an algebra, then k is universal.
Proof Continued: Let f € C(X) and € > 0.

@ Since A is dense in C(X), there exists g € As.t. ||[f — glleo < €.

e By definition of A, the function g is of the form g(x)=(w, ®(x))y,

with w = (w;)i>o s.t. w; =0 for any i > N for some N < occ.

@ Hence, g belongs to the unique RKHS H of K. This shows that H
is dense in C(X’), hence K is universal.
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Criteria for Universality

Proposition

Let 0 <r<ooand f:(—r,r) = R bea C*> function that admits an
expansion as a Taylor series in 0: f(x) = > 22, a;x’. Let X’ be a compact
set in the open centered ball in R? of radius \/r. If a; > 0 for all i >0,
then k(x,y) = f((x,y)) defines a universal kernel on X.

Proof: For simplicity, take d = 1.
@ K is continuous and of the form:

K(x,y) = aixy’ = (0(x),d(y))s
i=0

with ®(x) = (,/aix')i>0 which is injective.
o K(x,x)=>2,aix*>0 since a; > 0 for all i > 0.
o A:=span({@n|n > 0}) is the algebra of polynomials.
@ Hence K universal by the general criterion for universality.
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Criteria for Universality

Proposition (Steinwart 2001)
Let f : [0,27] — R be a continuous function that can be expanded in a
pointwise absolutely convergent Fourier series: f(t)=>_ ", ancos(nt).

If a, > 0 for all n > 0, then the Kernel K(X,y)::]_[f’:1 f(|xi — vil)
defines a universal kernel on every compact subset of [0, 27)9.

Proof: For simplicity, take d=1.
@ K is continuous and of the form:

K(x,y):ao—kz an(sin(nx)sin(ny)-+cos(nx)cos(ny)) = (®(x), ®(y))s
n=0
where ®(x)=(¢n(x))n>0 defined by wo(x) = a0, Yan—1=+/ansin(nx)
and @an(x) = /ancos(nx) for n > 1 is injective.
o K(x,x)=3 n2qan>0since a, > 0 for all n > 0.
o A:=span({@n|n > 0}) is an algebra (by trigonometric identities).
@ Hence K universal by the general criterion for universality.
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Summary: Characteristic kernels via Universality

@ On a compact metric set X, a universal kernel is a continuous kernel
whose RKHS (H) is dense in C(X') in the maximum norm.

@ Any universal kernel on X is characteristic, i.e. the mean embedding
map P — up=Ex..p[Kx]| € H defined on the set P of probability
distributions on X is injective:

VP,@EPZ/LPZIMQ = P=0Q.

@ Can construct a large class of universal kernels using Taylor series or
Fourier series with positive coefficients.

@ Both constructions follow from the General criterion for universality,
itself a consequence of Stone-Weierstrass theorem for compact
metric sets.

@ Question: What if X is not compact?
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Characteristic kernels via Fourier transform

o Consider a translation invariant kernel K on R? of the form
K(x,y)=r(x — y) with x : R = R.

@ Bochner's theorem implies the existence of a finite non-negative
Borel measure A on R such that x(z) = [e~2 "dA(w).

e Can express K as a Hermitian product in Ly(A) of Fourier features:
T

K(x,y) = (0(x), ®(0)n)ys W S(x)(w) = e ™ ™
@ Can express the mean embedding up in terms of
F(P)=Ex~p[®(X)] the of Fourier transform of P:

pe(y) = Ex~p[(P(X), P(y)) L,(0)] = (F(P), P(y)) 1o(n)

Fourier inversion theorem (Dudley 2002, Theorem 9.5.4)

If P and Q are two probability distributions on RY with the same Fourier
transform: F(P)=F(Q), then P=Q.

The measure A must " preserve information contained” in the Fourier
transform F(PP).
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Characteristic kernels via Fourier transform

Translation invariant characteristic kernels: (Sriperumbudur 2008)

Let K be a translation invanant kernel on RY of the form
K(x,y)=r(x — y) with x(z) = [ e~ “dA(w) for some finite
non-negative Borel measure /\ on RY. The kernel K is characteristic if
and only if supp (A) = RY.

o2
Example 1: Gaussian kernel K(x,y) = e~ 7 Ix¥I” The measure A is a

gaussian on R? with density w — Vora2e w2 "I Since

supp(\) = RY, K is characteristic.

Example 2: Let k(z) = Hz||_%Jd/2(||zH), where J, is Bessel’s function of
the first kind. Then K(x,y) = k(x — y) is not characteristic: A is the
uniform distribution on the unit ball.
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Characteristic kernels via Fourier transform

@ Bochner's theorem: A translation invariant kernel on R? is
characterized by unique finite non-negative measure A

e Main result: K is characteristic if and only if supp(A) = RY.
@ Similar reasoning can be applied to any space where Bochner's
theorem holds:

o Locally compact Abelian groups
o Compact, non-Abelian groups (orthogonal matrices)
o The semigroup RY.
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Characteristic kernels: Summary

Definition

Let X be a topological set and P the set of Borel probability measures
on X. Consider a bounded measurable p.d. kernel K defined on X and
let H be its RKHS. The kernel K is said to be characteristic if the map

P3P up =Exp[Kx]| € H is injective, i.e.:
VP,QeP:up=pnp = P=0Q.

Criteria for characteristic kernels
@ On a compact set X, can use criteria for universality: A kernel is
universal if it continuous and its RKHS is dense in C(X).
o If K admits a Taylor expansion with positive coefficients.
e If K admits a Fourier expansion with positive coefficients.
o If ¥ =RY and K is translation invariant with associated
non-negative measure A: K characteristic <= supp (A) = R?
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