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1 Introduction to supervised learning

Learning goals: Understand the general concepts of machine learning: train-
ing/validation/testing data, algorithm, loss function, risk, empirical risk.

Let’s start with an example of a practical problem. In order to better optimize its production, a
producer is interested in modeling electricity consumption in France as a function of temperature
(cf. Figure 1).
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Figure 1: French power consumption (GW) as a function of temperature (ºC). To the right are
plotted error minimizing functions for polynomial spaces of degrees 1 (red), 3 (green) and 30
(blue).

The objective is to find a function f such that it explains well the power consumption (yi)1⩽i⩽n

as a function of temperature (xi)1⩽i⩽n, that is yi ≈ f(xi). To do this, we can choose a function
space F and solve the empirical risk minimization problem:

f̂n ∈ argmin
f∈F

R̂(f) := argmin
f∈F

1

n

n∑
i=1

(
yi − f(xi)

)2
. (1)

Care must be taken when selecting the function space to avoid over-fitting (see Figures 1).
Although the empirical mean square error decreases when the F space becomes larger (larger
polynomial degrees), the f̂n estimator loses its predictive power. The question is: will f̂n perform
well on new data?
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Supervised learning: general setup and notation

Goal. In supervised machine learning, the goal is given some observations (xi, yi) ∈ X × Y of
inputs/outputs and given a new input x ∈ X to predict well the next output y ∈ Y. The training
data set will be denoted Dn := {(xi, yi), i = 1, . . . , n}. We will often make the assumption that
the observations (xi, yi) are realizations of i.i.d. random variables from a distribution ν.

The distribution ν is unknown to the statistician, it’s a matter of learning it from the Dn data.
A learning rule A is a function that associates to training data Dn a prediction function f̂n (the
hat on f indicates that it is an estimator):

A : ∪n∈N
(
X × Y

)n → YX

Dn 7→ f̂n
.

The estimated function f̂n is constructed to predict a new output y from a new x, where (x, y)
is a pair of test data, i.e. not observed in the training data. The function f̂n is an estimator
because it depends on the data Dn and not on unobserved parameter (such as ν). If Dn is
random, it is a random function.

Complexity of F

Error

Training error

Expected error

OverfittingUnderfitting

Best choice

Figure 2: Over-fitting and under-
fitting according to the complexity of
F . In blue the risk R(f) which we
want to minimize, in green the empir-
ical risk R̂(f) that we observe on the
training data.

Risk and empirical risk. The objective is to find an
estimator f̂n that predicts well new data by minimizing
the risk:

R(f̂n) := E
[(
y−f̂n(x)

)2 ∣∣∣Dn

]
where (x, y) ∼ ν .

(Risk)
However, the statistician cannot compute the expecta-
tion (and thus the risk) because he does not know ν.
A common method in supervised machine learning is
therefore to replace the risk with the empirical risk.

R̂(f) = 1

n

n∑
i=1

(
yi − f(xi)

)2
. (Empirical risk)

However, one must be careful about over-fitting (case
where R̂(f) is much lower than R(f), see Figure 2). In
this class, we will study the performance of the least
square estimator in the case of the linear model.

2



2 Linear least-squares regression

Learning goals: Understand the general concepts of linear regression: definition, how to
derive the closed-form solution and gradient descent updates, understand matrix notations,
know how linear regression can learn non-linear functions using features, have a highlevel idea
about bias variance trade-off and its impact on overfitting, know how to regularize.

We refer the interested reader to Bach, 2022 for more details and exercises on this section.

In this section, we study the simple but still widely used problem of linear least-squares regres-
sion. The linear regression problem can be traced back to Legendre (1805) and Gauss (1809).
The word “regression” is said to have been introduced by Galton in the 19th century. By model-
ing the size of individuals according to that of their fathers, Galton observed a return (regression)
towards average height. Larger-than-average fathers tend to have smaller children and vice versa
for smaller fathers.

Here, we consider real outputs (Y = R) and square loss ℓ(y, z) = (y−z)2. Given a parametrized
family of prediction function F := {fθ : X → Y, θ ∈ Θ}, we minimize the empirical risk

R̂(θ) := 1

n

n∑
i=1

(
yi − fθ(xi)

)2
.

In linear least-square regression, the functions θ 7→ fθ(x) are assumed to be linear in θ.

△! Being linear in θ or x is different. Nothing forces fθ(x) to be linear in x. Typically,

fθ(x) = ⟨θ, φ(x)⟩

for some feature map φ(x) ∈ Rd. For example, affine functions may be obtained with φ(x) = (x⊤, 1)⊤

and polynomials with φ(x) =
(
1, x1, x2, x

2
1, x

2
2, x1x2, . . .

)⊤. In Figure 1, we have in this way
minimized the empirical risk on polynomial spaces of degree 1 (linear model), 3 and 30. We
can see that we must be careful not to consider spaces that are too large, at the risk that
the model is badly posed (design matrix non injective as seen thereafter). Conversely, for
the statistical analysis that we will see next to be verified, one must be in the true model
y = ⟨φ(x), θ∗⟩ + centered noise. We must therefore make sure that φ(x) contains enough de-
scriptors so that the dependency between y and φ(x) is indeed linear. Otherwise we pay an
additional bias term.

Why should we study linear regression?

• It captures many concepts of learning theory: bias-variance trade-off, need of regulariza-
tion,. . .

• It is simple: the analysis can be done in basics maths (linear algebra).
• Using non-linear features, it can be extended to non-linear predictions 7→ kernel methods.

Matrix notation The empirical risk can be rewritten in matrix notation. Let y = (y1, . . . , yn)
⊤ ∈

Rn be the vector of outputs and φ ∈ Rn×d the matrix of inputs (also called design matrix or
data matrix), which rows are φ(xi)

⊤:

φ =
(
φ(x1), φ(x2), . . . , φ(xn)

)⊤
∈ Rn×d .
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The empirical risk is then

R̂(θ) = 1

n

n∑
i=1

(
yi − ⟨θ, φ(xi)⟩

)2
=

1

n

∥∥y − φθ
∥∥2
2
. (2)

△! The matrix notation is very useful to simplify calculation.

2.1 Ordinary Least Squares Estimator (OLS)

In the following, we assume that the design matrix φ is injective (i.e., the rank of φ is d). In
particular, d ⩽ n.

Definition 2.1. If φ is injective, the minimizer of the empirical risk

θ̂ = argmin
θ∈Θ

1

n

∥∥y − φθ
∥∥2
2
,

is called the Ordinary Least Squares (OLS) estimator.

Proposition 2.1 (Closed form solution). If φ is injective, the OLS exists and is unique. It is
given by

θ̂ =
(
φ⊤φ

)−1
φ⊤y .

Proof. Since R̂ is coercive (goes to infinity in infinity) and continuous, it admits at least a
minimizer. Furthermore, we have

R̂(θ) = 1

n

∥∥y − φθ
∥∥2
2
=

1

n

(
θ⊤

(
φ⊤φ

)
θ − 2θ⊤φ⊤y + ∥y∥2

)
.

Since R̂ is differentiable any minimizer should cancel the gradient:

∇R̂(θ̂) = 1

n

(
θ̂⊤(φ⊤φ) + (φ⊤φ)θ̂ − 2φ⊤y

)
=

2

n

(
(φ⊤φ)θ̂ − φ⊤y

)
.

where the last equality is because φ⊤φ ∈ Rd×d is symmetric. Since φ is injective, φ⊤φ is
invertible (Exercise: show this implication). Therefore, a solution of ∇R̂(θ̂) = 0 satisfies

θ̂ =
(
φ⊤φ)−1φ⊤y.

However, it remains to check that this is indeed a minimum and therefore that the Hessian is
definite positive, which is the case because: ∇2R̂(θ̂) = 2

n(φ
⊤φ).

Geometric interpretation The linear model seeks to model the output vector y ∈ Rn by
a linear combination of the form φθ ∈ Rn. The image of φ is the solution space, denoted
Im(φ) = {z ∈ Rn : ∃θ ∈ Rd s.t. z = φθ} ⊆ Rn. This is the vector subspace of Rn generated by
the d < n columns of the design matrix. As rg(φ) = d, it is of dimension d.

By minimizing ∥y − φθ∥ (cf. Definition 2.1), we thus look for the element of Im(φ) closest to
y. This is the orthogonal projection of y on Im(φ), denoted ŷ. By definition of the OLS and by
the Proposition 2.1, we have:

ŷ
Def 2.1
= φθ̂

Prop. 2.1
= φ(φ⊤φ)−1φ⊤y.

In particular, Pφ := φ(φ⊤φ)−1φ⊤ ∈ Rn×n is the projection matrix on Im(φ).
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Numerical resolution

The closed form formula θ̂ =
(
φ⊤φ

)−1
φ⊤y from the OLS is useful in analyzing it. However,

calculating it naively can be prohibitively expensive. Especially when d is large, one prefers
to avoid inverting the design matrix φ⊤φ which costs O(d3) by the Gauss-Jordan method and
can be very unstable when the matrix is badly conditioned. The following methods are usually
preferred.

QR factorization To improve stability, QR decomposition can be used. Recall that θ̂ is the
solution to the equation:

(φ⊤φ)θ̂ = φ⊤y ,

We write φ ∈ Rn×d of the form φ = QR, where Q ∈ Rn×d is an orthogonal matrix (i.e.,
Q⊤Q = Id) and R ∈ Rd×d is upper triangular. Upper triangular matrices are very useful for
solving linear systems. Substituting in the previous equation, we get:

R⊤(Q⊤Q)Rθ̂ = R⊤Q⊤y ⇔ R⊤Rθ̂ = R⊤Q⊤y

⇐ Rθ̂ = Q⊤y .

Then all that remains is to solve a linear system with a triangular upper matrix, which is easy.

Gradient descent We can completely bypass the need of matrix inversion or factorization us-
ing gradient descent. It consists in solving the minimization problem step by step by approaching
the minimum through gradient steps. For example, we initialize θ̂0 =0, then update:

θ̂i+1 = θ̂i − η∇R̂(θ̂i)

= θ̂i −
2η

n

(
(φ⊤φ)θ̂i − y⊤φ

)
,

where η > 0 is a learning parameter. We see that if the algorithm converges, then it converges to
a point canceling the gradient, thus to the OLS solution. To have convergence, the η parameter
must be well calibrated, but this is beyond the scope of these notes.

If the data set is much too big, n ≫ 1. It can also be prohibitively expensive to load all the
data to make the ∇R̂(θ̂i) calculation. The common solution is then to do Stochastic Gradient
Descent, where gradient steps are made only on estimates of ∇R̂(θ̂i), calculated on a random
subset of the data.

2.2 Statistical analysis

In this section, we will provide theoretical guarantees for the OLS. To do so, we will need some
probabilistic assumptions.

△! This section is here to provide theoretical insights on bias-variance trade-off in machine
learning and how to compute it on a simple model like linear regression and how regularization
helps. Detailed calculations will not be asked at the final exam.
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2.2.1 Stochastic assumptions

Any kind of guarantees requires assumption about how the data is generated. In this section,
we consider a stochastic framework that will allow us to analyze the performance of OLS.

Assumption 1 (Linear model). We assume that there exists a vector θ∗ ∈ Rd such that for all
1 ⩽ i ⩽ n

yi = ⟨φ(xi), θ∗⟩+ εi , (3)

where ε = (ε1, . . . , εn)
⊤ ∈ Rn is a vector of errors (or noise). The εi are assumed to be centered

independent variables E[εi] = 0 and with variance E[εi] = σ2.

Recall that xi, yi and εi (from now on) are random variables. The noise εi comes from the fact
that in practice the observation yi never completely fits the linear forecast. This is due to noise
or unobserved explanatory variables. The Equation (3) can be rewritten in matrix form:

y = φθ∗ + ε

where y = (y1, . . . , yn)
⊤ ∈ Rn, φ = (φ(x1), . . . , φ(xn))

⊤ ∈ Rn×d and ε = (ε1, . . . , εn)
⊤ ∈ Rn.

From here, there are two settings of analysis for least squares:

• Fixed design. In this setting, the design matrix φ is not random but deterministic and the
features φ(x1), . . . , φ(xn) are fixed. The expectations are thus only with respect to εi and
yi and the goal is to minimize the risk

Rφ(θ) = E

[
1

n

n∑
i=1

(
yi − φ(xi)

⊤θ
)2]

= E
[
1

n

∥∥y − φθ
∥∥2
2

]
, (4)

for new random observations yi (different from the ones observed in the dataset) but on
the same inputs.

• Random design. Here, both the inputs and the outputs are random. This is the most stan-
dard setting of supervised machine learning. The goal is to minimize the risk (sometimes
called the generalization error) defined in Equation (Risk).

In this class, we consider the fixed design setting because it eases the notation and the calculation
(we only need simple linear algebra).

2.2.2 Bias/variance decomposition

Before analyzing the statistical properties of OLS, we state a general result under the linear model
which illustrate the trade-off between estimation and approximation (or bias and variance).

Proposition 2.2 (Risk decomposition). Under the linear model (Assumption 1) with fixed de-
sign, for any θ ∈ Rd it holds

E
[
Rφ(θ)−Rφ(θ

∗)
]
= ∥θ − θ∗∥2Σ

where Σ = 1
nφ

⊤φ ∈ Rd×d and ∥θ∥2Σ = θ⊤Σθ. If θ is a random variable (because it depends on a
random data set) but independent from the test data then

E
[
Rφ(θ)]−Rφ(θ

∗) =
∥∥E[θ]− θ∗

∥∥2
Σ︸ ︷︷ ︸

Bias

+E
[∥∥θ − E[θ]

∥∥2
Σ

]
︸ ︷︷ ︸

Variance

.
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Proof. Now, let θ ∈ Rd. Then, taking the expectation over y,

Rφ(θ) = E
[ 1
n

∥∥y − φθ
∥∥2
2

]
= E

[ 1
n

∥∥y − φθ∗ + φ(θ∗ − θ)
∥∥2
2

]
= E

[ 1
n

∥∥y − φθ∗
∥∥2]+ 2

n��������
E
[(
y − φθ∗

)⊤]
φ(θ∗ − θ) +

1

n

∥∥φ(θ∗ − θ)
∥∥2
2

(5)

= Rφ(θ
∗) +

∥∥θ − θ∗
∥∥2
Σ
.

If θ is random but independent from y, we have the following bias-variance decomposition

E
[
Rφ(θ)]−Rφ(θ

∗) = E
[∥∥θ − E[θ] + E[θ]− θ∗

∥∥2
Σ

]
= E

[∥∥θ − E[θ]
∥∥2
Σ

]
+ E

[
(θ − E[θ])⊤Σ(E[θ]− θ∗)

]
+ E

[∥∥E[θ]− θ∗
∥∥2
Σ

]
= E

[∥∥θ − E[θ]
∥∥2
Σ

]
+((((((((

2E
[
(θ − E[θ])

]⊤Σ(E[θ]− θ∗) +
∥∥E[θ]− θ∗

∥∥2
Σ

= E
[∥∥θ − E[θ]

∥∥2
Σ

]
+ E

[∥∥E[θ]− θ∗
∥∥2
Σ

]
.

It is worth to note that the optimal risk satisfies

Rφ(θ
∗) = E

[
1

n

n∑
i=1

(
yi − φ(xi)

⊤θ∗
)2]

= E

[
1

n

n∑
i=1

ε2i

]
=

1

n

n∑
i=1

E
[
ε2i
]
= σ2 .

△! Note also that, here, we assumed that θ is independent from the test data y, allowing us to
factor it out of the expectation in the red term of Equation (5). However, when θ and y are
correlated (e.g., because θ is an estimator that used some test data or because y is obtained
from train data) this term becomes non-zero (see Exercise 2.1).

2.2.3 Statistical properties of OLS

We now show some guarantees for the OLS estimator.

Proposition 2.3. Under the linear model (i.e., Assumption 1) with fixed design, the OLS esti-
mator θ̂ defined in Definition 2.1 satisfies:

• it is unbiased E
[
θ̂
]
= θ∗.

• its variance is Var(θ̂) = σ2

n Σ−1 .

We can even show that the OLS satisfies the Gauss-Markov property. It is optimal among
unbiased estimators of θ, in the sense that it has a minimal variance-covariance matrix.

Proof. Using E[εi] = 0 and y = φθ∗ + ε, we have

E[θ̂] = E
[
(φ⊤φ)−1φ⊤y

]
= E

[
(φ⊤φ)−1φ⊤φθ∗ +�������

(φ⊤φ)−1φ⊤ε
]
= θ∗ .

Furthermore, using Var(y) = Var(ε) = σ2In, we have

Var(θ̂) = Var
(
(φ⊤φ)−1φ⊤y

)
= (φ⊤φ)−1φ⊤Var(y)φ(φ⊤φ)−1 = σ2(φ⊤φ)−1 =

σ2

n
Σ−1 .
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Corollary 2.4 (Excess risk of OLS). Under the linear model with fixed design, the excess risk
of the OLS satisfy

E
[
Rφ(θ̂)

]
−Rφ(θ

∗) =
σ2d

n
.

Proof. Using the bias-variance decomposition and the fact that θ∗ is unbiased (i.e., E[θ̂] = θ∗),
we have

E
[
Rφ(θ̂)]−Rφ(θ

∗) =�������∥∥E[θ̂]− θ∗
∥∥2
Σ
+ E

[∥∥θ̂ − E[θ̂]
∥∥2
Σ

]
= E

[∥∥θ̂ − θ∗
∥∥2
Σ

]
= E

[
(θ̂ − θ∗)⊤Σ(θ̂ − θ∗)

]
=

1

n
E
[
(θ̂ − θ∗)⊤φ⊤φ(θ̂ − θ∗)

]
=

1

n
E
[
Tr

(
(θ̂ − θ∗)⊤φ⊤φ(θ̂ − θ∗)

)]
=

1

n
E
[
Tr

(
φ(θ̂ − θ∗)(θ̂ − θ∗)⊤φ⊤)] ← because Tr(AB) = Tr(BA)

=
1

n
Tr

(
φE

[
(θ̂ − θ∗)(θ̂ − θ∗)⊤

]
φ⊤

)
← because E and Tr are linear operators

=
1

n
Tr

(
φVar(θ̂)φ⊤)

=
σ2

n
Tr

(
φ(φ⊤φ)−1φ⊤)

=
σ2

n
Tr

(
(φ⊤φ)−1φ⊤φ

)
← because Tr(AB) = Tr(BA)

=
σ2

n
Tr(Id) =

σ2d

n
.

Exercise 2.1. Show that the empirical risk of the OLS estimator satisfies the equality

E
[
R̂φ(θ̂)

]
=

n− d

n
σ2.

In particular, an unbiased estimator of the noise variance σ2 is

σ̂2 =
∥y − φθ̂∥2

n− d
.

Gaussian noise model A very considered special case is Gaussian noise εi ∼ N (0, σ2).
This choice comes not only from the fact that it allows to compute many additional statistical
properties on θ̂ and to perform tests (confidence intervals, significance of variables, . . . ). In
practice, it is also motivated by the central limit theorem and the fact that noise is often
an addition of many phenomena not explained by the linear combination of the explanatory
variables.

Proposition 2.5. In the linear model with Gaussian noise, the maximum likelihood estimators
of θ and σ satisfy respectively:

θ̂MV =
(
φ⊤φ

)−1
φy and σ̂2

MV =
∥y − φθ̂∥2

n
.
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We will prove more formally this proposition in the maximum likelihood section (Section 4.
We therefore find the least-squares estimator obtained by minimizing the empirical risk. The
variance estimator is biased.

2.3 Ridge regression

If φ is not injective (i.e., rg(φ) ̸= d), the matrix Σ := 1
nφ

⊤φ is no longer invertible and the
OLS optimization problem admits several solutions. The problem is said to be poorly posed or
unidentifiable.

The Proposition 2.3 reminds us that the variance of θ̂ depends on the conditioning of the matrix
Σ−1 = n(φ⊤φ)−1. The more the columns of the latter are likely to be dependent, the less stable
θ̂ will be. Several solutions allow to deal with the case where rg(φ) < d:

• explicit complexity control by reducing the solution space Im(φ). This can be done by
removing columns from the φ matrix until it becomes injective (for example, by reducing
the degree of polynomials). One can also set identifiability constraints of the form θ ∈ V
a vector subspace of Rd such that any element y ∈ Im(φ) has a unique antecedent θ ∈ V
with y = φθ. For example, we could choose V = Ker(φ)⊥.

• implicit complexity control by regularizing the empirical risk minimization problem. The
most common is to regularize by adding ∥θ∥22 (Ridge regression, which we see below) or
∥θ∥1 (Lasso regression).

Definition 2.2. For a regularization parameter λ, the Ridge regression estimator is defined as

θ̂λ ∈ argmin
θRd

{
1

n
∥y − φθ∥22 + λ∥θ∥22

}
.

The regularization parameter λ > 0 regulates the trade-off between the variance of θ̂ and its
bias.

Proposition 2.6. The Ridge regression estimator is unique (even if φ is not injective) and
satisfies

θ̂λ =
(
φ⊤φ+ nλIn

)−1
φ⊤y .

The proof is similar to the one of OLS and left as exercise. We can see that there is no longer
the problem of inverting φ⊤φ since the Ridge regression amounts to replacing

(
φ⊤φ

)−1 by(
φ⊤φ+ nλIn

)−1 in the OLS solution.

Proposition 2.7 (Risk of Ridge regression). Under the linear model (Assumption 1), the Ridge
regression estimator satisfies

E
[
Rφ(θ̂λ)

]
−Rφ(θ

∗) =
d∑

j=1

(θ∗j )
2 λj

(1 + λj/λ)2
+

σ2

n

d∑
j=1

λ2
j

(λj + λ)2
,

where λj is the j-th eigenvalue of Σ = 1
nφ

⊤φ. In particular, the choice λ∗ =
σ
√

Tr(Σ)

∥θ∗∥2
√
n

yields

E
[
Rφ(θ̂λ∗)

]
−Rφ(θ

∗) ⩽
σ
√

2Tr(Σ)∥θ∗∥2√
n

.
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The proof, which follows from the bias-variance decomposition (Proposition 2.2) is left as exer-
cise.

Note that as λ → 0, its risk converges to the one of OLS. The first term corresponds to the
bias of the Ridge estimator. Thus, on the downside the Ridge estimator is biased in contrast to
the OLS. But on the positive side, its variance does not involve the inverse of Σ but of Σ+ λId
which is better conditioned. It has therefore a lower variance. The parameter λ controls this
trade-off.

We can compare the excess risk bound obtained by θ̂λ∗ with the one of OLS which was σ2d/n:

• First, the one of OLS decreases in O(1/n) while this one converges slower in O(1/
√
n)

which could seem worse. Yet Ridge has a milder dependence on the noise σ instead of σ2.
• Furthermore, since Tr(Σ) ⩽ max1⩽i⩽n ∥φ(xi)∥2, if the input norms are bounded by R, the

excess risk of Ridge does not depend on the dimension d, which can even be infinite. It is
called a dimension free bound.

The calibration of the regularization parameter is essential in practice. It can for example be
done analytically as in the proposition (but some quantities are unknown σ2, ∥θ∗∥,. . . ). In
practice one resorts to train/validation set or cross-validation (generalized).
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3 Logistic regression

Learning objectives: understand the main concepts of logistic regression, what loss function
it minimizes, how it can be seen as a convexification of zero-one loss, how to perform gradient
descent, how to classify data when it is not linearly separable.

We will consider the binary classification problem in which one wants to predict outputs in {0, 1}
from inputs in Rd. We consider a training set Dn :=

{
(xi, yi)

}
1⩽i⩽n

. The data points (xi, yi)

are i.i.d. random variables and follow a distribution P in X ×Y. Here, Y = {0, 1} but it is also
common to consider {−1, 1}.

Goal We would like to use a similar algorithm to linear regression. However, since the outputs
yi are binary and belong to {0, 1} we cannot predict them by linear transformation of the inputs
xi (which belong to Rd). We will thus classify the data thanks to classification rules f : Rd 7→ R
such that:

f(xi)

{
⩾ 0 ⇒ yi = +1
< 0 ⇒ yi = 0

,

to separate the data into two groups. In particular, we will consider linear functions f of the
form fθ : x 7→ ⟨x, θ⟩. This assumes that the data are well-explained by a linear separation (see
figure below).

Linearly separable data
wX = 0

wX>0

wX<0

Non-linearly separable data

f(X) = 0

f(X)>0

f(X)<0

Of course, if the data does not seem to be linearly separable, we can use similar tricks that
we mentioned for linear regression (polynomial regression, kernel regression, splines,. . . ). We
search a feature map x 7→ φ(x) into a higher dimensional space in which the data are linearly
separable. This will be the topic of the class on Kernel methods.

Loss function To minimize the empirical risk, it remains to choose a loss function to assess the
performance of a prediction. A natural loss is the binary loss: 1 if there is a mistake (f(xi) ̸= yi)
and 0 otherwise. The empirical risk is then:

R̂(θ) = 1

n

n∑
i=1

1yi ̸=1⟨xi,θ⟩⩾0
.

This loss function is however not convex in θ. The minimization problem minθ R̂(θ) is extremely
hard to solve. The idea of logistic regression consists in replacing the binary loss with another
similar loss function which is convex in θ. This is the case of the Hinge loss and of the logistic
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loss ℓ : {0, 1} × R → R+. The latter assigns to a linear prediction z = x⊤θ and an observation
y ∈ {0, 1} the loss

ℓ(y, z) := y log
(
1 + e−z

)
+ (1− y) log

(
1 + ez

)
. (6)

−3 0 1
0

0.5

1 binary

logistic

Hinge

ŷ

er
ro

r

Figure 3: Binary, logistic and
Hinge loss incured for a predic-
tion z := ⟨x, θ⟩ when the true
observation is y = 0.

The binary loss, Hinge loss and logistic loss are plotted in Fig-
ure 3. Note that if the output space is Y = {−1, 1}, the logistic
loss is defined differently: ℓ(y, z) := log(1 + e−zy).

Definition 3.1 (Logistic regression estimator). The logistic re-
gression estimator is the solution of the following minimization
problem:

θ̂(logit) = argmin
θ∈Rd

1

n

n∑
i=1

ℓ
(
yi, ⟨xi, θ⟩

)
,

where ℓ is the logistic loss defined in Equation (6).

An advantage of the logistic loss with respect to the Hinge
loss is that it has a probabilistic interpretation by modeling
P(y = 1|x), where (x, y) is a couple of random variables follow-
ing the law of (xi, yi). We will see more on this in the lecture
on Maximum Likelihood.

Computation of θ̂(logit) Similarly to OLS, we may try to
analytically solve the minimization problem by canceling the gradient of the empirical risk.
Since

∂ℓ(y, z)

∂z
= σ(z)− y, where σ : z 7→ 1

1 + e−z

is the logistic function, we have:

∇R̂(θ) = 1

n

n∑
i=1

xi
(
σ(⟨xi, θ⟩)− yi

)
=

1

n
x
(
y − σ(xθ)

)
where x := (x1, . . . , xn)

⊤, y := (y1, . . . , yn), and σ
(
⟨x, θ⟩

)
i
:= σ(⟨xi, θ⟩) for 1 ⩽ i ⩽ n. Bad news:

the equation ∇R̂(θ) = 0 has no closed-form solution. It needs to be solved through iterative
algorithm (gradient descent, Newton’s method,. . . ). Fortunately, this is possible because the
logistic loss is convex in its first argument. Indeed,

∂2ℓ(y, z)

∂z
= σ(z)σ(−z) > 0 .

The loss is strictly convex, the solution is thus unique.

Regularization Similarly to linear regression, logistic regression may over-fit the data (es-
pecially when d > n). One needs then to add a regularization such as λ∥θ∥22 to the logistic
loss.
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4 Probabilistic models: maximum likelihood estimation

Learning objectives: understand the highlevel idea and definition of maximum likelihood,
know how to compute it for simple models like Gaussians or Binomials, understand the con-
nexion with logistic and linear regression.

In probabilistic modeling, we are given a set of observations Dn = (y1, . . . , yn) in Y that we
assume to be generated from some unknown i.i.d. distribution. The objective is to find a
probabilistic model that explains well the data. For instance by estimating the density of the
underlying distribution. If possible, we would like the model to predict well new data and to be
able to incorporate prior knowledge and assumptions.

Let µ denote some reference measure on the output set Y. Typically, µ is the counting measure
if Y ⊂ N or the Lebesgue measure if Y ⊂ Rp.

Definition 4.1 (Parametric model). Let d ⩾ 1 and Θ ⊆ Rd be a set of parameters. A parametric
model P is a set of probability distributions taking value in Y with a density with respect to µ
and indexed by Θ: P := {pθdµ|θ ∈ Θ}.

Example 4.1. Here are a few examples of statistical parametric models based on well known
family distributions:

• Bernoulli model: Y = {0, 1}, Θ = [0, 1], and pθ(k) = θk(1− θ)1−k for k ∈ Y.

• Binomial model: Y = N, Θ = [0, 1] and pθ(k) =

(
n

k

)
θk(1− θ)n−k;

• Gaussian model: Y = R, Θ = {(µ, σ) ∈ R× R+} and p(µ,σ)(x) =
1√
2πσ

e−
(x−µ)2

2σ2

• Multidimensional Gaussian model: Y = Rd, Θ = {(µ,Σ) ∈ Rd ×Md(R)} and

p(µ,Σ)(x) =
1

(2π)d/2|Σ|1/2
e−

1
2
(x−µ)⊤Σ−1(x−µ).

• Exponential model on Y = R+,. . .

Now, we assume that we are given some model P indexed by θ ∈ Θ and we assume that the
data Dn is generated independently from pθ∗ ∈ P for some unknown parameter θ∗. We would
like to recover the best parameter θ∗ from the data. Note that in practice the data might come
from a distribution which is not in P: we call this misspecification but we will not enter into
this details in this class.

4.1 Maximum likelihood estimation

The idea behind maximum likelihood estimation is to choose the most probable parameter θ ∈ Θ
for the observed data. Assume that Y is discrete and that y ∼ pθ∗dµ for some θ∗ ∈ Θ. Then,
given any observation yi, the probability that y takes the value yi equals pθ∗(yi). Similarly, the
probability of observing (y1, . . . , yn) ∈ Yn if all the samples were sampled independently from pθ
is
∏n

i=1 pθ(yi) . Hence, the high level idea of maximum likelihood estimation will be to maximize
this probability over θ ∈ Θ. This is formalized by the definition of the likelihood which also
holds for non-discret set Y.
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Definition 4.2 (Likelihood). Let P = {pθ, θ ∈ Θ} be a parametric model and y ∈ Y. The
likelihood of a data point x is the function θ 7→ pθ(x). The likelihood L(.|Dn) of a data set
Dn = (y1, . . . , yn) is the function

L(·|Dn) : θ 7→
n∏

i=1

pθ(yi) .

The maximum likelihood estimator (MLE) is then the parameter which maximizes the likelihood,
i.e.,

θ̂n ∈ argmax
θ∈Θ

{
n∏

i=1

pθ(yi)

}
.

This principle was proposed by Ronal Fisher in 1922 and was validated since with good theoret-
ical properties. It is worth pointing out that since log is an increasing function, the maximum
likelihood estimator can also be obtained by maximizing the log-likelihood:

θ̂n ∈ argmax
θ∈Θ

{
n∑

i=1

log(pθ(yi))

}
. (MLE)

This turns out to be much more convenient in practice because it is easier to maximize a sum
than a product. Convince yourself by computing the gradients!

Examples

• Bernoulli model: Y = {0, 1}, Θ = [0, 1], pθ(y) = θy(1 − θ)(1−y). We assume that Dn was
generated from a Bernoulli distribution of parameter θ∗, then the maximum likelihood
estimator is:

θ̂n = argmin
0⩽θ⩽1

1

n

n∑
i=1

(
yi log θ + (1− yi) log(1− θ)

)
.

Denoting ȳn = 1
n

∑n
i=1 yi the empirical average and solving d logL(θ̂n|Dn)/dθ = 0 yields

ȳn

θ̂n
− 1− ȳn

1− θ̂n
= 0 ⇒ (1− ȳn)θ̂n = (1− θ̂n)ȳn ⇒ θ̂n = ȳn .

Therefore the maximum likelihood estimator is in this case the empirical mean.

• As an exercise, compute the maximum likelihood estimator for the models seen in Exam-
ple 4.1.

Link with empirical risk minimization In density estimation, the goal is to find the density
of the distribution which generated the data. Assuming that the density belongs to the model
P, the possible densities are pθ, for θ ∈ Θ. A standard loss function in this setting is the negative
log-likelihood: ℓ : (θ, y) ∈ Θ× Y 7→ − log

(
pθ(y)

)
. The risk (or generalization error) is then:

R(θ) = −Ey

[
log(pθ(y))

]
.

In particular, if y ∼ pθ∗dµ for some θ∗ ∈ Θ, θ∗ minimize the risk and the objective is to recover
θ∗. The empirical risk is then by definition

R̂(θ) = − 1

n

n∑
i=1

log
(
pθ(yi)

)
.

Therefore, the empirical risk minimizer matches the estimator obtained from maximum likeli-
hood in Equation (MLE).
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Conditional modeling

Until now, we considered the problem of density estimation when the data set has only outputs
yi ∈ Y. However, the principle of maximum likelihood can be extended to couples of input
outputs Dn = {(x1, y1), . . . , (xn, yn)} in X ×Y. We can then distinguish two different modeling:

– Generative modeling: we aim at estimating the density of couples of input outputs (x, y)
among a family of densities (x, y) ∈ X × Y 7→ pθ(x, y) on X × Y. Then the risk and the
empirical risks are:

R(θ) = −E
[
log(pθ(x, y)

]
R̂(θ) = − 1

n

n∑
i=1

log
(
pθ(xi, yi)

)
.

This can be useful to generate some new samples (see what is obtained with GANs).
– Conditional modeling: we aim at estimating the density of an output y given an input x.

The family of densities are now conditional densities y ∈ Y 7→ pθ(.|x) on Y only but that
depend on the inputs. The risks are then

R(θ) = −E
[
log(pθ(y|x)

]
R̂(θ) = − 1

n

n∑
i=1

log
(
pθ(yi|xi)

)
.

This is useful if one want to predict the distribution or the value of a new output y given x.

4.2 Probabilistic interpretation of least-squares and logistic regression

4.2.1 Probabilistic insight of linear regression

We consider a data set Dn = {(x1, y1), . . . , (xn, yn)} of samples in X × Y. We assume that the
outputs yi were independently generated from a Gaussian distribution of mean ⟨w,φ(xi)⟩ and
variance σ2. In other words, we model an output y given an input x as

y = ⟨w∗, φ(x)⟩+ ε, where ε ∼ N (0, σ2
∗) .

for some unknown θ∗ = (w∗, σ
2
∗) ∈ Rd × R+. Our family of possible conditional densities is

indexed by parameters θ = (w, σ2) ∈ Rd × R+

pθ(y|x) =
1√
2πσ

exp
(
−
(
y − ⟨w,φ(x)⟩

)2
2σ2

)
.

The empirical risk (or conditional log-likelihood) is then

R̂(θ) = − 1

n

n∑
i=1

log
(
pθ(yi|xi)

)
=

1

2nσ2

n∑
i=1

(
yi − ⟨w,φ(xi)⟩

)2
+

1

2
log(2πσ2) .

Therefore, the maximum likelihood estimator ŵn of w∗ in a Gaussian model is the estimator
obtained by least-squares linear regression. As an exercise, you may show that the maximum
likelihood estimator for σ∗ is

σ̂2
n =

1

n

n∑
i=1

(
yi − ŵ⊤

n φ(xi)
)2

.

Note that as we saw in the lecture on linear least-squares regression, the estimator σ̂2
n is biased:

E[σ̂2
n] = (1− d/n)σ2.
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4.2.2 Probabilistic insight of logistic regression

The advantage of the logistic loss with respect to the Hinge loss is that it has a probabilistic
interpretation by modeling P(y = 1|x). Denote by p(x|y = 1) the density of x when the label is
1 and by p(x|y = 0) the conditional density when the label is 0.

By Bayes rules, we have

P(y = 1|x) = p(x|y = 1)P(y = 1)

p(x|y = 1)P(y = 1) + p(x|y = 0)P(y = 0)
=

1

1 + P(y=0)p(x|y=0)
P(y=1)p(x|y=1)

.

Denote by

f(x) := log

(
P(y = 1|x)
P(y = 0)|x)

)
= log

(
P(y = 1)

P(y = 0)

)
+ log

(
p(x|y = 1)

p(x|y = 0)

)
the logarithmic ratio of the probability of observing y equals 1 with the one of observing y = 0.
Then,

P(y = 1|x) = 1

1 + e−f(x)
=: σ(f(x)) with σ(z) =

1

1 + e−z
.

The function σ is called the logistic function and satisfies σ(−z) = 1−σ(z) et dσ(z)
dz = σ(z)σ(−z).

Its interest is that it allows to transform a function f with value in R into a probability between
0 and 1.

Then, the proposition below shows that performing maximum likelihood estimation on this
probabilistic model with linear function f(x) = ⟨θ, φ(x)⟩ is actually equivalent with logistic
regression.

Proposition 4.1. Assuming, that (xi, yi)1⩽i⩽n is a n-sample such that P(yi = 1|xi) = σ(⟨θ, φ(x)⟩),
then the maximum likelihood estimator of θ is

θ̂(logit) ∈ argmin
θ∈Rd

1

n

n∑
i=1

ℓ
(
yi, ⟨θ, φ(xi)⟩

)
,

where ℓ(y, z) = y log
(
1 + e−z

)
+ (1− y) log

(
1 + ez

)
is the logistic loss.

Proof. The log-likelihood can be written

logL(θ|Dn) =
n∑

i=1

log
(
Pθ(yi = 1|xi)yi(1− Pθ(yi = 0|xi)1−yi

)
=

n∑
i=1

log
(
σ
(
⟨θ, φ(xi)⟩

)yiσ(− ⟨θ, φ(xi)⟩)1−yi
)

= −
n∑

i=1

ℓ
(
yi, ⟨θ, φ(xi)⟩

)
where ℓ is the logistic loss. Therefore,

argmax
θ∈Rd

logL(θ|Dn) = argmin
θ∈Rd

n∑
i=1

ℓ
(
yi, ⟨θ, φ(xi)⟩

)
.

The logistic regression estimator is therefore the maximum likelihood estimator.
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Exemple: Gaussian mixture. Assume that you have classes such that the covariate

x follows
{
N (µ0,Σ0) if y = 0
N (µ1,Σ1) if y = 1

,

for some µ0, µ1 ∈ Rp and symmetric definite positive matrices Σ0,Σ1 ∈ Rp×p. The data is
plotted in Figure 4. Then, the density of x for each class i ∈ {0, 1} is

p(x|y = i) = det
(
2πΣi

)−1/2
exp

(
− 1

2
(x− µi)

⊤Σ−1
i (x− µi)

)
.

Therefore,

f(x) = log

(
P(y = 1)

P(y = 0)

)
+ log

(
p(x|y = 1)

p(x|y = 0)

)
= log

(
P(y = 1)

P(y = 0)

)
+

1

2
log detΣ0 −

1

2
log detΣ1

+
1

2
(x− µ0)

⊤Σ−1
0 (x− µ0)−

1

2
(x− µ1)

⊤Σ−1
1 (x− µ1) .

It is a quadratic function in x ∈ Rp. There exists thus θ ∈ Rd with d = p(p + 1) such that
f(x) = ⟨θ, φ(x)⟩ with quadratic features

φ(x) = (1, x1, x2, . . . , xd, x1x2, x1x3, . . . ) ∈ Rd .

Therefore, Gaussian mixtures fits into this probabilistic model. And logistic regression with
quadratic features φ(x) corresponds to maximum likelihood estimation in this model. Actually,
logistic regression incorporates many possible laws for p(x|y = i) beyond Gaussian.

The classification performed with logistic regression (or maximum likelihood) is plotted in Fig-
ure 4 on a few examples. As an exercise you might reproduce this examples in python.

−2 0 2 4

−
2

0
2

4

x1

x2

−2 −1 0 1 2

−
3

−
2

−
1

0
1

2

x1

x2

−2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2

x1

x2

Figure 4: Examples of logistic regression classification for mixtures of Gaussian. Each covariate
x is sampled from a 2-dimensional Gaussian distribution in R2 according to the class y = 0 and
y = 1. The frontier of logistic regression with 2-degree polynomials as features is plotted in
black line.
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5 K-Nearest Neighbors

△! This chapter gives a detailed analysis of the consistency of kNN and is available for the
curious student. The student will not be expected to master the analysis precisely for the
final exam. The student will just be expected to have a general idea of the nearest neighbor
estimator and how it works.

Learning objectives: understand the main concepts of k-nearest neighbors, how to compute
it, when does it converge to the optimal classifier, definition of a plug-in estimator, how to
compute the risk in simple cases

We would like to classify objects, described with vectors x in Rd, among L + 1 classes † :=
{0, . . . , L} in an automatic fashion. To do so, we have at hand a labelled data set of n data
points (xi, yi) ∈ Rd × Y for 1 ⩽ i ⩽ n. The data is assumed to be i.i.d. random variables from
a distribution ν. The goal of this lesson is to build a classifier, i.e., a function

f : Rd → Y

which minimizes the probability of mistakes: P(x,y)∼ν

{
f(x) ̸= y

}
. The latter can be rewritten

as the expected risk R(f) := E(x,y)∼ν

[
1f(x)̸=y

]
of the 0-1 loss ℓ(y, z) = 1{y ̸= z}.

In previous lectures, we considered linear least-squares and logistic regression, wich are based
on the empirical risk minimization approach:

f̂ ∈ argmin
f∈F

1

n

n∑
i=1

ℓ(yi, f(xi))

for some parametric function set F . In this lecture, we will see another approach based on local
averaging.

K = 3

Figure 5: k-nearest neighbors with two classes (orange and blue) and k = 3. The new input
(i.e., the black point) is classified as blue which corresponds to the majority class among its
three nearest neighbors.

The k-nearest neighbors classifier works as follows. Given a new input x ∈ Rd, it looks at
the k nearest points xi in the data set Dn = {(xi, yi)} and predicts a majority vote among them.
The k-nearest neighbors classifier is quite popular because it is simple to code and to understand;
it has nice theoretical guarantees as soon as k is appropriately chosen and performs reasonably
well in low dimensional spaces. In this notes, we will investigate the following questions:

– consistency: does k-NN has the smallest possible probability of error when the number of
data grows?
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Figure 6: Prediction landscape of the k-NN classifier with three classes with k = 1 (left) k = 3
(middle), and k = 20 (right).

– how to choose k?

There are plenty of other possible interesting questions. How should we choose the metric (in-
variance properties,. . . )? Can we get improved performance by using different weights between
neighbors (local averaging methods)? Is it possible to improve the computational complexity
(by reducing the data size or keeping some data in memory,...). These questions are however
beyond the scope of these lecture notes and we refer the interested reader to the book Devroye
et al., 2013.

△! k-NN may also be used for regression by predicting the average value of the yi among the
nearest neighbors instead of doing majority vote.

Pros and cons of kNN
• Pros: The algorithm does not require any learning (no use of gradient descent or any

optimization algorithm to train the algorithm). Furthermore, it is very easy to implement.
Finally, it can get good performance in practice and is theoretically optimal as we will see
in this lecture.

• Cons: The algorithm is slow at query time (to make a prediction) since it must pass
through all data for each prediction (to compute which are the nearest neighbors). More-
over it may be easily fooled by irrelevant outputs and it has poor performance for high-
dimensional data (d ≳ 20).

What hyper-parameters? When applying kNN, the learner must make two decisions: the
number of neighbors k and the metric ∥ · ∥. The number of neighbors balances the bias-variance
tradeoff. Figure 6 shows the predictions obtained with kNN for different values of k: the
boundary becomes smoother as k increases. The metric (or distance between neighbors) is also
a crucial choice, especially for complex data (structured data like images, speeches or graphs).

5.1 Bayes classifier and plug-in estimator

Assumptions and notation For simplicity, we assume the binary case: L = 1 and Y = {0, 1}.
And we define the function η : Rd → [0, 1] by:

η(x′) := P(x,y)∼ν

(
y = 1|x = x′

)
∀x′ ∈ Rd . (7)
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△! In the following except when stated otherwise the expectation and probability are according
to (x, y) ∼ ν. For clarity, we will omit the subscript (x, y) ∼ ν in E and P. In some cases, if
the classifier is random, for instance because it was build on the random data set (xi, yi) the
expectation might also be taken with respect to the classifier itself. But it will be explicited.

Lemma 5.1. For any (deterministic) classifier f : Rd → Y,

R(f) = E
[
η(x)1f(x)=0 + (1− η(x))1f(x)=1

]
.

Proof. Let f be a classifier, then

R(f) = E
[
1f(x)̸=y

]
= E

[
E
[
1f(x)̸=y|x

]]
= E

[
E
[
1f(x)̸=y|x, y = 1

]
P{y = 1|x}+ E

[
1f(x)̸=y|x, y = 0

]
P{y = 0|x}

]
= E

[
E
[
1f(x)̸=1|x, y = 1

]
η(x) + E

[
1f(x)̸=0|x, y = 0

]
(1− η(x))

]
= E

[
1f(x)=0η(x) + 1f(x)=1(1− η(x))

]
.

The (optimal) Bayes classifier. It is worth to notice that a random classifier sampling
f(x) = 0 and f(x) = 1 with probability 1/2 has an expected risk 1/2. Hence, we will only focus
on non-trivial classifiers that outperform this expected error. If the function η was known, one
could define the Bayes classifier as follows:

f∗(x) =

{
1 if η(x) ⩾ 1/2
0 otherwise

Lemma 5.2. The risk of the Bayes classifier is

R∗ := R(f∗) = E
[
min{η(x), 1− η(x)}

]
.

Furthermore, for any classifier f we have

R(f)−R∗ = E
[∣∣2η(x)− 1

∣∣1f(x)̸=f∗(x)

]
⩾ 0.

The above lemma implies that the Bayes classifier is optimal and R∗ = minf :Rd 7→{0,1}R(f). The
goal of this lesson is to build a classifier that gets close to R∗. We call such estimator consistent.

Definition 5.1 (Consistency). We say that an estimator f̂n is consistent if

E(xi,yi)∼ν

[
R(f̂n)

]
−→

n→+∞
R∗.

Proof. Applying Lemma 5.1, we get from the definition of f∗

R∗ = E
[
η(x)1f∗(x)=0 + (1− η(x))1f∗(x)=1

]
= E

[
η(x)1η(x)<1/2 + (1− η(x))1η(x)⩾1/2

]
= E

[
min{η(x), 1− η(x)}

]
, .

Furthermore, let f : Rd → Y, then

R(f)−R∗ = E
[
η(x)(1f(x)=0 − 1f∗(x)=0) + (1− η(x))(1f∗(x)=1 − 1f∗(x)=1)

]
= E

[
(2η(x)− 1)(1f(x)=0 − 1f∗(x)=0)

]
= E

[
(2η(x)− 1)1f(x)̸=f∗(x)sign(1− 21f∗(x)=0)

]
But sign(1− 21f∗(x)=0) = sign(1− 21η(x)⩽1/2) = sign(2η(x)− 1) which concludes the proof.
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Therefore, if η was known, one could compute the optimal classifier f∗. However, η is unknown
and one should thus estimate it.

Plug-in estimator Let η̂n be an estimator of η, i.e., η̂n is a function of the training data
Dn = (xi, yi)1⩽i⩽n which takes values in the functions from Rd to [0, 1]. We will omit in the
following the dependence of η̂n in the data Dn. From η̂n, we can build the plug-in estimator as
follows:

f̂n(x) =

{
1 if η̂n(x) ⩾ 1/2
0 otherwise . (8)

Hopefully, if η̂n is close enough to η the estimator f̂n will be also close to f∗ and will have a
small risk. This is formalized be the following Lemma.

Lemma 5.3. If f̂n is defined in (8), then R(f̂n)−R∗ ⩽ 2E(x,y)∼ν

[∣∣η(x)− η̂n(x)
∣∣ ∣∣Dn

]
.

Proof. From Lemma 5.2, we have

R(f̂n)−R∗ = 2E
[∣∣η(x)− 1/2

∣∣1
f̂n(x)̸=f∗(x)

|Dn

]
.

Thus, to prove the Lemma it suffices to show that almost surely,∣∣η(x)− 1/2
∣∣1

f̂n(x)̸=f∗(x)
⩽ |η(x)− η̂n(x)| .

We can assume that 1
f̂n(x)̸=f∗(x)

̸= 0 (otherwise the inequality is true). This implies that
η̂n(x)− 1/2 and η(x)− 1/2 have opposite sign. In particular it yields

|η(x)− 1/2| ⩽ |η(x)− 1/2|+ |1/2− η̂n(x)| = |η(x)− η̂n(x)|

which concludes the proof.

The above Lemma shows first, if η̂n = η, then the plug-in classifier f̂n is Bayes optimal. Second,
if η̂ ≈ η, then f̂n is close to f∗. Therefore, if we could build from the data an estimator η̂n of η
such that

E(xi,yi)∼ν

[
|η(x)− η̂n(x)|

]
−→

n→+∞
0

then the associated plugin classifier f̂n would be consistent (see Definition 5.1). The reverse if
not true: estimating η is harder then estimating f∗. We will show that the k-nearest neighbors
satisfy the above convergence if the number of neighbors grows appropriately. This is not the
case for fixed numbers of neighbors.

5.2 The k-nearest neighbors classifier (kNN)

The kNN classifiers classifies a new input x with the majority class among its k-nearest neighbors
(see Figure 5). More formally, we denote by x(i)(x) the i-th nearest neighbor of x ∈ Rd (using
the Euclidean distance) among the inputs xi, 1 ⩽ i ⩽ n. We have for all x ∈ Rd∥∥x− x(1)(x)

∥∥ ⩽
∥∥x− x(2)(x)

∥∥ ⩽ . . . ⩽
∥∥x− x(n)(x)

∥∥
and x(i)(x) ∈ {x1, . . . , xn} for all 1 ⩽ i ⩽ n. We denote by y(i)(x) ∈ {0, 1} the label of the i− th
neighbor. We can then define

η̂kn(x) =
1

k

k∑
i=1

y(i)(x) =
1

k

n∑
i=1

yi1xi∈{x(1)(x),...,x(k)(x)}
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and f̂k
n the kNN classifier is the plugin estimator defined in (8). We denote by

RkNN := lim
n→∞

E(xi,yi)∼ν

[
R(f̂k

n)
]

the asymptic risk of the k-nearest neighbor classifier.

Example 5.1. Let’s consider a concrete example. Suppose we have two biased dice that we roll
heads or tails. The feature x represents the die that we throw: x = 1 if we throw the first die and
x = 2 if we throw the second. The player is asked to predict the outcome of a rolled die that was
picked uniformly at random between the two. Let’s say that the first die has a 3/4 probability of
turning up heads (y = 1) and the second has a 2/3 probability of turning up tails (y = 0). We
can formalize this as:

P(y = 1|x = 1) =
3

4
and P(y = 1|x = 0) =

1

3
.

These probabilities are unknown to the player, but the player has access to as many rolls of each
of the two dice as he or she wishes before making a prediction.

In this example, the function η : x 7→ P(y = 1|x) equals η(1) = 3/4 and η(2) = 1/3. The optimal
prediction is thus to predict head (y = 1) if the first die x = 1 is rolled and tail (y = 0) if it is
the second (x = 2). The optimal probability of error is thus

R∗ = P( tail | 1st die is rolled )P( 1st die is rolled )

+ P( head | 2nd die is rolled )P( 2nd die is rolled )

= P(y = 0|x = 1)P(x = 1) + P(y = 1|x = 2)P(x = 2) =
1

4
× 1

2
+

1

3
× 1

2
=

7

24
≈ 0.29 .

A player that would play the 1-Nearest neighbor would see what die is rolled, used a single past
outcome of that die to make its prediction. For the first die, the player would thus predict tail
with probability 3/4 and head with probability 1/4. Its probability of error is thus

R1-NN = P( head | 1st die is rolled )P( 1st die is rolled and player predicts tail )
+ P( tail | 1st die is rolled )P( 1st die is rolled and player predicts head )

+ P( head | 2nd die is rolled )P( 2nd die is rolled and player predicts tail )
+ P( tail | 2nd die is rolled )P( 2nd die is rolled and player predicts head )

= P(y = 0|x = 1)P(x = 1)
3

4
+ P(y = 1|x = 0)P(x = 1)

1

4

+ P(y = 1|x = 2)P(x = 2)
2

3
+ P(y = 0|x = 2)P(x = 2)

2

3

=
1

4
× 1

2
× 3

4
+

3

4
× 1

2
× 1

4
+

1

3
× 1

2
× 2

3
+

2

3
× 1

2
× 2

3

=
59

144
≈ 0.41 .

This is better than random guess but worth than optimal. If the player would use more samples
of previous rolls, its error would decrease. This is what we show next.

5.3 The nearest neighbor classifier

Theorem 5.4 (Inconsistency of the 1-nearest neighbor). The asymptotic risk of the 1-nearest
neighbor satisfies R∗ ⩽ RkNN = E

[
2η(x)(1− η(x))

]
⩽ 2R∗(1−R∗) .
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Figure 7: [left] Risk of the 1-nearest neighbor and optimal risk according to η. [right] The risk
of the 1-nearest neighbor lies in the dotted area in-between the blue curve (optimal risk) and
the red curve (upper-bound of Theorem 5.4).

Sketch of proof of Theorem 5.4. We do not provide the complete proof here but only a sketch
with the main idea. We refer the curious reader to Devroye et al., 2013 for the rigorous argument.
Let (x, y) ∼ ν be some new input. From (7), knowing x the label y follows a Bernoulli distribution
with parameter η(x). When the number n of data points increases the nearest neighbor of x
gets closer to x (this has to be made rigorous since x is a random variable). Thus by continuity
of η, given x when n→∞, we also have y(1)(x) ∼ B(η(x)). Therefore,

lim
n→∞

E(xi,yi)∼ν

[
R(f̂1

n)
]
= P

{
y(1)(x) ̸= y

}
where y(1)(x), y ∼ B(η(x)) are independent given x. The probability of error is thus

P
{
y(1)(x) ̸= y

}
= E(x,y)∼ν

[
P
{
y(1)(x) ̸= y

∣∣x}]
= E(x,y)∼ν

[
P{y = 1, y(1)(x) ̸= 1|x

}
+ P

{
y ̸= 1, y(1)(x) = 1|x

}]
= E(x,y)∼ν

[
P{y = 1|x}P

{
y(1)(x) ̸= 1|x

}
+ P

{
y ̸= 1|x}P{y(1)(x) = 1|x

}]
= E(x,y)∼ν

[
2η(x)

(
1− η(x)

)]
.

This concludes the first equality of the Theorem. As for the second, denotingR(x) := min{η(x), 1−
η(x)}, we have

E
[
η(x)

(
1− η(x)

)]
= E

[
R(x)(1−R(x)

] Concavity
⩽ E[R(x)]

(
1− E[R(x)]

)
= R∗(1−R∗) .

The 1-nearest neighbor is therefore not consistent as shown in Figure 7 as soon as the optimal
risk is not trivial: R∗ /∈ {0, 1/2}. This result was first proved by Cover and Hart, 1967 with
assumptions on ν and η and by Stone, 1977 without any assumption. It is worth to stress that
this result is completely distribution free (independent of ν and η). The smoothness of ν and η
does not matter for the limit, it only changes the rate of convergence.

5.4 Inconsistency of the k-NN classifier (fixed k)

Therefore, a single neighbor is not sufficient to approach the optimal risk R∗. Actually, we could
prove a similar result for any fixed number of neighbors. It is convenient to let k be odd to avoid
ties. We refer to Devroye et al., 2013 for the proof.
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Theorem 5.5. Let k ⩾ 1 be odd and fixed. Then, the asymptotic risk of the k-nearest neighbor
satisfies

RkNN = EX

 k∑
j=0

(
k

j

)
η(x)j(1− η(x))k−j

(
η(x)1j<k/2 + (1− η(x))1j>k/2

)
= R∗ + E

[∣∣2η(x)− 1
∣∣P{Binomial(k,min{η(x), 1− η(x)}) > k

2

∣∣∣x}] .
Sketch of proof of Theorem 5.5. Similarly to Theorem 5.4, we only provide an idea of the proof.
Let (x, y) ∼ ν be a new data point. When the number of data goes to infinity, the nearest
neighbors x(1)(x), . . . , x(k)(x) of x get closer to x (to be proved rigorously) and given x their
labels y(1)(x), . . . , y(k)(x) are i.i.d. Bernoulli random variables with parameter η(x). The k-NN
classifier predicts

f̂k
n =

{
1 if y(1)(x) + · · ·+ y(k)(x) >

k
2

0 if y(1)(x) + · · ·+ y(k)(x) <
k
2

.

The asymptotic probability of error of the k-NN classifier is thus

RkNN = lim
n→∞

P
{
f̂k
n ̸= y

}
= P

{
y(1)(x) + · · ·+ y(k)(x) <

k

2
, y = 1

}
+ P

{
y(1)(x) + · · ·+ y(k)(x) >

k

2
, y = 0

}
= EX

[
P{y = 1|x}︸ ︷︷ ︸

η(x)

P
{
y(1)(x) + · · ·+ y(k)(x)︸ ︷︷ ︸

Binomial(k,η(x))

>
k

2
|x
}

+ P{y = 0|x}︸ ︷︷ ︸
1−η(x)

P
{
y(1)(x) + · · ·+ y(k)(x)︸ ︷︷ ︸

Binomial(k,η(x))

<
k

2

}]
,

where given x, y(1)(x) + · · · + y(k)(x), y are i.i.d. independent Bernoulli random variables with
parameter η(x). This proves the first equality.

RkNN = EX

[
α(η(x))

]
where

α(p) := pP
{
Binomial(k, p) <

k

2

}
+ (1− p)P

{
Binomial(k, p) >

k

2

}
.

If p < 1/2, then p < 1− p and

α(p) = p
(
1− P

{
Binomial(k, p) >

k

2

})
+ (1− p)P

{
Binomial(k, p) >

k

2

}
= p+ (1− 2p)P

{
Binomial(k, p) >

k

2

}
.

Following the same calculation for p > 1/2 yields

α(p) = min{p, 1− p}+ |2p− 1|P
{
Binomial

(
k,min{p, 1− p}

)
>

k

2

}
which concludes the proof using that R∗ = EX

[
min{η(x), 1− η(x)}

]
.

The previous Theorem may provide nice inequalities on RkNN as shown by the next corollary.
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Corollary 5.6. We have R∗ ⩽ . . . ⩽ R5NN ⩽ R3NN ⩽ R1NN ⩽ 2R∗(1 − R∗). Furthermore,
let k ⩾ 1 be odd and fixed. Then, the asymptotic risk of the k-NN classifier satisfies

RkNN ⩽ R∗ +
1√
ke

.

Proof. The first inequalities are because P
{
Binomial

(
k, p

)
> k

2

}
decreases in k for p < 1/2. Let

0 ⩽ p ⩽ 1/2 and B ∼ Binomial(k, p). Then,

(1− 2p)P
{
B >

k

2

}
= (1− 2p)P

{
B − kp

k
>

1

2
− p

}
(∗)
⩽ (1− 2p)e−2k(1/2−p)2

⩽ sup
0⩽u⩽1

ue−ku2/2

=
1√
ke

,

where (∗) is by the Okamoto-Hoeffding inequality that we recall below (see Devroye et al., 2013,
Thm 8.1).

Lemma 5.7 (Okamoto-Hoeffding inequality). Let x1, . . . , xn be independant bounded random
variables such that xi ∈ [ai, bi] almost surely. Then, for all ε > 0

P {Sn − E[Sn] ⩾ ε} ⩽ e
−2ε2∑n

i=1
(bi−ai)

2
,

where Sn =
∑n

i=1 xi.

Therefore the asymptotic error of the k-NN classifier decreases with k but is not consistent: for
any fixed k, it does not converge to the optimal risk R∗. The idea is thus to make k → ∞
when n grows.

5.5 Consistent nearest neighbors making k →∞

Theorem 5.8 (Stone 1964). If k(n)→∞ and k(n)
n → 0 then the k(n)-NN classifier is univer-

sally consistent: for all distribution ν, we have

Rk(n)NN := lim
n→∞

E(xi,yi)∼ν

[
R(f̂k

n)
]
= R∗ .

Historically, this is the first universally consistent algorithm. The proof is not trivial and comes
from a more general result (Stone’s Theorem) on “Weighted Average Plug-in” classifiers (WAP).

Definition 5.2 (Weighted Average Plug-in classifier (WAP)). Let Dn = {(x1, y1), . . . , (xn, yn)},
a WAP classifier is a plug-in estimator f̂n associated to an estimator of the form

η̂n(x) =
n∑

i=1

wn,i(x)yi

where the weights wn,i(x) = wn,i(x, x1, . . . , xn) are non negative and sum to one.
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This is the case of the k-NN classifier which satisfies

wn,i(x) =

{
1
k if xi is a kNN of x
0 otherwise .

Theorem 5.9 (Stone 1977). Let (fn)n⩾0 a WAP such that for all distribution ν the weights wn,i

satisfy

a) it exists c > 0 s.t. for all non-negative measurable function f with E[f(x)] <∞,

E

[
n∑

i=1

wn,i(x)f(xi)

]
⩽ cE

[
f(x)

]
;

b) for all a > 0, E
[∑n

i=1wn,i(x)1∥xi−x∥>a

]
−→

n→+∞
0

c) E
[
max1⩽i⩽nwn,i(x)

]
−→

n→+∞
0

Then, the plug-in estimator associated with η̂n(x) =
∑n

i=1wn,i(x)yi is universally consistent

lim
n→∞

E
[
R(f̂n)

]
= R∗ .

Let us make some remarks about the conditions:

a) is a technical condition
b) says that the weights of points outside of a ball around x should vanish to zero. Only the

xi in a smaller and smaller neighborhood of x should contribute.
c) says that no point should have a too important weight. The number of points in the local

neighborhood of x should increase to ∞.

Proof of Theorem 5.9. From Lemma 5.3 together with Cauchy-Schwarz, it suffices to show that
E
[
(η(x)− η̂n(x))

2
]
−→

n→+∞
0. Let us introduce

η̃n(x) :=
n∑

i=1

wn,i(x) η(xi)︸ ︷︷ ︸
instead of yi in η̂n

in which we replaced yi in η̂n with η(xi) which we recall:

η̂n(x) =
n∑

i=1

wn,i(x)yi and η(x) =
n∑

i=1

wn,i(x)η(x) .

Using (a+ b)2 ⩽ 2a2 + 2b2, we have

E
[
(η(x)− η̂n(x))

2
]
⩽ 2E

[
(η(x)− η̃n(x))

2
]︸ ︷︷ ︸

(1)

+2E
[
(η̃n(x)− η̂n(x))

2
]︸ ︷︷ ︸

(2)

.

We will upper-bound (1) and (2) independently.
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(1) For simplicity, to bound this term we assume η to be absolutely continuous: let ε > 0, it
exists a > 0 such that ∥x− x′∥ ⩽ a⇒ (η(x)− η(x′))2 ⩽ ε. Then,

(1) = E
[( n∑

i=1

wn,i(x)
(
η(x)− η(xi)

))2]
Jensen
⩽ E

[ n∑
i=1

wn,i(x)
(
η(x)− η(xi)

)2]

= E
[ n∑

i=1

wn,i(x)
(
η(x)− η(xi)

)2
1∥xi−x∥⩽ε

]
+ E

[ n∑
i=1

wn,i(x)
(
η(x)− η(xi)

)2
1∥xi−x∥⩾ε

]

⩽ ε+ E
[ n∑

i=1

wn,i(x)
(
η(x)− η(xi)

)2
1∥xi−x∥⩾ε

]

⩽ ε+ E
[ n∑

i=1

wn,i(x)1∥xi−x∥⩾ε

]
︸ ︷︷ ︸
−→

n→+∞
0 from Assumption (b)

.

Therefore (1) converges to 0 as n → ∞. If η is not absolutely continuous, the result still
holds using Assumption (a) but the proof is harder (see Devroye et al., 2013, p99).

(2) For the second term, using that E[η(xi)] = yi, only the diagonal terms in the sum remain

(2) = E
[( n∑

i=1

wn,i(x)
(
yi − η(xi)

))2]

=

n∑
i=1

∑
j ̸=i

wn,i(x)wn,j(x)E
[(
yi − η(xi)

)(
yj − η(xj)

)]
︸ ︷︷ ︸

=0

+E
[ n∑

i=1

wn,i(x)
2
(
yi − η(xi)

)2]

= E
[ n∑

i=1

wn,i(x)
2
(
yi − η(xi)

)2]

⩽ E
[ n∑

i=1

wn,i(x)
2

]

⩽ E
[ n∑

i=1

wn,i(x)︸ ︷︷ ︸
=1

max
1⩽j⩽n

wn,i(x)

]

⩽ E
[
max
1⩽j⩽n

wn,i(x)

]
−→

n→+∞
0 from Assumption (c) .

Let us now conclude with the proof of the consistency of the k nearest neighbors when k →∞.

Proof of Theorem 5.8. First, we recall the definition of the weights wn,i(x) for the kNN classifier:

wn,i(x) =
1xi∈x(1)(x),...,x(k)(x)

k
=

{
1
k if xi belong to the k nearest neighbors of x
0 otherwise .

It suffices to show that they satisfy the three assumptions of Theorem 5.9 (Stone’s theorem):
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c) for all x, max1⩽i⩽nwn,i(x) =
1

k(n) −→n→+∞
0 so that assumption (c) holds.

b) let a > 0, recall that x(k)(x) is the k-th nearest neighbor of x. We use that almost surely the
distance of the k-nearest neighbor of x with x goes to zero when k/n→ 0:∥x−x(k)∥ −→

n→+∞
0

when k
n → 0 (see Devroye et al., 2013 for details). This yields P{∥x− x(k)(x)∥ > a} → 0

which entails

E
[ n∑

i=1

wn,i(x)1∥xi−x∥>a

]

⩽ E

[
n∑

i=1

wn,i(x)1∥xi−x∥>a1∥xi−x(k)(x)∥>a

]
+ E

[
n∑

i=1

wn,i(x)1∥xi−x∥>a1∥xi−x(k)(x)∥<a

]
⩽ 0 + P

{
∥xi − x(k)(x)∥ < a

}
→ 0

a) Technical. See Devroye et al., 2013, Lemma 5.3.

Conclusion The k-nearest neighbors are universally consistent if k → ∞ and k/n → 0.
Stone’s theorem is actually more general and applies to other rules such as histograms.
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6 High-dimensional data and variable selection

Learning objectives: understand the main concepts of the curse of dimensionality and how
to deal with it. Understand why the Lasso regularization induces sparsity and how to compute
the Lasso estimator with coordinate gradient descent.

In statistics or machine learning, we often want to explain some output Y ∈ Y from input
X ∈ X ⊂ Rp by observing a data set Dn = {(Xi, Yi)}1⩽i⩽n of i.i.d. observations. In previous
lessons, we saw methods such as Ordinary Least Square Regression, K-Nearest Neighbors, Lo-
gistic Regression, and Probabilist models. Today, we would like to deal with high-dimensional
input spaces, i.e., large p (possibly p≫ n). We will have two motivations in mind:

• prediction accuracy : when p ≫ n classical models fail. Is it possible to have strong
theoretical guarantees on the risk (i.e., generalization error)?

• model interpretability : by removing irrelevant features Xi (i.e, by setting the corresponding
coefficients estimates to zero), the model will easier to understand.

Good references on this topic are Giraud, 2014 and Friedman et al., 2001.

Why high-dimensional data? The volume of available data is growing exponentially fast
nowadays. According to IBM in 2017, 1018 bytes of data were created every day in the world
and 90% of data is less than two years old. Many modern data record simultaneously thousands
up to millions of features on each objects or individuals. In many applications, data is high-
dimensional such as with DNA, images, video, cookies (data about consumer preferences) or in
astrophysics.

The curse of dimensionality

• High-dimensional spaces are vast and data points are isolated in their immensity.
• The accumulation of small errors in many different directions can produce a large global

error.
• An event that is an accumulation of rare events may be not rare in high-dimensional space.

Example 6.1. In high-dimensional spaces, no point in you data set will be close from a new
input you want to predict. Assume that your input space is X = [0, 1]p. The number of points
needed to cover the space at a radius ε in L2 norm is of order 1/εp which increases exponentially
with the dimension. Therefore, in high dimension, it is unlikely to have a point in you data set
that will be close to any new input.

Example 6.2. In high-dimensional spaces classical distances are often meaningless: all the
points tends to be at similar distance from one another. Consider the following example to
convince ourselves. Assume that X,X ′ follow uniform distribution on [0, 1]p. Then, the expected
distance in square L2-norm between X and X ′ is

E
[
∥X −X ′∥2

]
=

p∑
i=1

E
[
(Xi −X ′

i)
2
]
= pE

[
(X1 −X ′

1)
2
]
= p

∫ 1

0

∫ 1

0
(x− x′)dxdx′ =

p

6

Therefore, the average distance between the points increases with the dimension. Furthermore,
the standard deviation of this square distance is

√
Var

(
∥X −X ′∥2

)
=

√√√√ p∑
i=1

Var
(
(Xi−X ′

i)
2
)
=

√
pVar

(
(X1 −X ′

1)
2
)
=

√
7p

6
√
5
≃ 0.2

√
p .
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Thus, if we plot the distribution of the square distance, we get something like:

95% of the points are at distance 0.4
√
p

p/6

Distance between points in [0, 1]p

D
en

si
ty

Therefore, relatively to their
distance, all points seem to
be at similar distance from
one another. The notion of
nearest point distance van-
ishes. As a consequence, K-
Nearest Neighbors gets poor
performance in large dimen-
sion.

Example 6.3. Let us consider another example in high-dimensional linear regression. We con-
sider the ordinary least square estimator (OLS) for the linear model

β̂ ∈ argmin
β∈Rp

∥∥Y−Xβ
∥∥2 where Yi = x⊤i β

∗+εi, X = (x1, . . . , xn)
⊤ ∈ Rn×p and εi

i.i.d.∼ N (0, σ2) .

If rg(X) = p (i.e., p ⩽ n) then β̂ = (X⊤X)−1X⊤Y and as we saw in previous lecture the
estimator satisfies

E
[
∥β̂ − β∗∥2

]
= Tr

(
(X⊤X)−1

)
σ2 .

In particular, in the very gentle case of an orthogonal design, we get E
[
∥β̂ − β∗∥2

]
= pσ2 .

Therefore, the variance of the estimator increases linearly with the dimension and the later gets
unstable for high-dimensional data. Furthermore, OLS only works for p ⩽ n because other-
wise the matrix X⊤X is not invertible and using pseudo-inverse would lead to highly unstable
estimator and over-fitting. One needs to regularize.

The previous examples seem to show that the curse of dimensionality is unavoidable and we are
doomed to poor estimators in large dimension. Hopefully, in many cases, data has an intrinsic
low complexity (sparsity, low dimensional structure,. . . ). This is the case of the data (for instance
with images) or of the machine learning methods which is used (for instance Kernel regression).

What can we do with high-dimensional data? There are three classes of methods to deal
with large dimensional input spaces:

• Model selection: we identify a subset of s≪ p predictors that we believe to be related to
the response. We then fit a model (for instance OLS) on the s variables only.

• Regularization: Ridge, Lasso,. . .
• Dimension reduction: the objective is to find a low-dimensional representation of the

data. If we consider linear transformation, we may project the p predictors into a s-
dimensional space with s≪ p. This is achieved by computing s different linear combination
or projections of the variables. Then these projections are used as new features to fit a
simple model for instance by least squares. Examples of such methods are PCA, PLS, . . .

6.1 Model selection

The high level idea is to compare different statistical models corresponding to different possible
hidden structure and select the best. This is theoretically very powerful, however the computa-
tional complexity is often prohibitive. Here, we will consider the example of the sparse linear
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model
Y = Xβ∗ + ε , Y = (y1, . . . , yn) ∈ Rn, quadX ∈ Rn×p, ε ∼ N (0, σ2In) . (9)

We consider p≫ n but we assume that β∗ has only s < p non-zero coordinates.

If we knew in advance the non-zero coordinates of β∗ say m∗ ⊂ {1, . . . , p}, we could consider
the simpler linear regression problem yi =

∑
j∈m∗ β∗

jXi,j + εi and use the estimator

β̂m ∈ argmin
β ∈ Rp

βj = 0∀j /∈ m

∥∥Y −Xβ
∥∥2 (10)

for the correct choice m = m∗. More generally, this would work if we know that β belongs to
some vectorial space of dimension s < p. We then get a risk which is scaling with s instead of p
and the estimator has good statistical properties.

If we do not know m∗ in advance, assuming the algorithmic complexity is not a problem, we can

1. consider a collectionM of possible models m ⊂ {1, . . . , p};
2. compute β̂m for each m ∈M as defined in (10);
3. estimate β∗ by the best estimator among the collection β̂m.

A natural candidate for the best model is the minimizer of the empirical risk:

β̂m̂ with m̂ ∈ argmin
m∈M

{∥∥Y −Xβ̂m
∥∥2}

The issue is that larger models m ⊃ m′ will always get smaller empirical risk because of over-
fitting. One needs to penalize models according to their complexity and choose the penalized
estimator

β̂m̂ with m̂ ∈ argmin
m∈M

{∥∥Y −Xβ̂m
∥∥2 + pen(m)

}
(11)

There are several well known penalization criteria.

The Akaike Information Criterion (AIC) It defines the penalization

pen(m) = 2|m|σ2 .

The AIC criterion is motivated by the following lemma.

Lemma 6.1. In least square linear regression with Gaussian model (see (9)), ∥Y − X̂βm∥2 +
(2|m| − n)σ2 is an unbiased estimator of the risk R(β̂m) := E

[
∥Xβ∗ −Xβ̂m∥2

]
.

Proof. We show that in least square regression the risk equals

R(β̂m) := E
[
∥Xβ∗ −Xβ̂m∥2

]
= E

[
∥Y −Xβ̂m∥2

]
+ (2|m| − n)σ2 .

Let us first give some useful notation an equalities. For each m ⊂ {1, . . . , p}, we define the
sub-vectorial space Sm := {Xβ ∈ Rn : β ∈ Rp, βj = 0 ∀j /∈ m} and ΠSm ∈ Rn×n the orthogonal
projection matrix on Sm. Then, by definition of β̂m, we have Xβ̂m = ΠSmY and we recall that
Y = Xβ∗ + ε. Furthermore, we will also use that:

E
[
∥ΠSmε∥2

]
= E

[
ε⊤Π⊤

Sm
ΠSmε

]
= E

[
ε⊤ΠSmε

]
= E

[
Tr(ε⊤ΠSmε)

]
= E

[
Tr(ΠSmεε

⊤)
]
= σ2Tr(ΠSm) = |m|σ2 . (12)
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Similarly, E
[
∥(I−ΠSm)ε∥2

]
= (n−|m|)σ2. From the decomposition Y −Xβ̂m = (I−ΠSm)(Xβ∗+

ε), we have

E
[
∥Y −Xβ̂m∥2

]
= E

[
∥(I −ΠSm)Xβ∗∥2 +(((((((((

2ε⊤(I −ΠSm)Xβ∗ + ∥(I −ΠSm)ε∥2
]

= ∥(I −ΠSm)Xβ∗∥2 + (n− |m|)σ2 .

= ∥(I −ΠSm)Xβ∗∥2 + E
[
∥ΠSmε∥2

]
+ (n− 2|m|)σ2

= E
[
∥(I −ΠSm)Xβ∗ −ΠSmε∥2

]
+ (n− 2|m|)σ2 ← Pythagore’s theorem

= E
[
∥Xβ∗ −ΠSm(Xβ∗ + ε)∥2

]
+ (n− 2|m|)σ2

= E
[
∥Xβ∗ −Xβ̂m∥2

]
+ (n− 2|m|)σ2 .

Prior-based penalization Another popular penalization is to assign a prior weight πm for
each m ∈M, choose a regularization parameter K > 1 and select

pen(m) = Kσ2
(√
|m|+

√
2 log(1/πm)

)2
. (13)

Theorem 6.2 (Thm. 2.2, Giraud, 2014). Under the model 9, there exists some constant CK > 1
depending only on K such that the penalized estimator β̂m̂ defined in (11) with penalty (13)
satisfies

R(β̂m̂) := E
[
∥Xβ∗ −Xβ̂m̂∥2

]
⩽ CK min

m∈M

{
E
[
∥Xβ∗ −Xβ̂m∥2

]
+ σ2 log

1

πm
+ σ2

}
.

A possible choice motivated by minimum description length (see lecture on PAC-Learning with
infinite number of models) for the prior is log(1/πm) ≈ 2|m| log p, i.e., the number of bits needed
to encode m ⊂ {1, . . . , p}. Remark that this choice of prior leads up to the log p to a similar
criterion that for AIC. Yet, it is worth pointing out that the previous theorem is valid for
general models m ∈M (it is not restricted to the estimators (10)) and priors πm. Other priors
can promote different types of assumptions such as group sparsity.

Computational issues The estimator (11) has very nice statistical properties even when
p ≫ n. However we need to compute β̂m for all models m ∈ M. This is often prohibitive. We
can understand it by rewriting it as an optimization problem of the form

β̂m̂ ∈ argmin
β∈Rp

{
∥Y −Xβ∥2 + λ∥β∥0

}
(14)

which is non-convex because of the ∥ · ∥0. The estimator of AIC corresponds to the choice
λ = 2σ2. In some cases, such as orthogonal design, we can approximate efficiently the solution
or find an efficient implementation. However, this is not true in general. A approximate imple-
mentation which is sometimes used to solve (11) is the forward-backward algorithm. It consists
in alternatively trying to add or remove variables in the model one by one. It quickly converges
in practice, but there is no theoretical guarantees.
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6.2 The Lasso

The high-level idea of the Lasso is to transform the non-convex optimization problem (14) into
a convex problem. This is done by replacing the ℓ0-norm ∥β∥0 =

∑m
j=1 1βj ̸=0 with the ℓ1-norm

∥β∥1 =
∑p

j=1 |β|j which is convex. We define the LASSO estimator

β̂λ ∈ argmin
β∈Rp

{
∥Y −Xβ∥2 + λ∥β∥1

}
. (LASSO)

The solution β̂λ may not be unique but the prediction Xβ̂λ is.

6.2.1 Geometric insight

By convex duality, the Lasso is also the solution of

β̂λ ∈ argmin
β∈Rp:∥β∥1⩽Rλ

{
∥Y −Xβ∥2

}
,

for some radius Rλ > 0. The non-smoothness of the ℓ1-norm puts some coefficients to zero.
In Figure 8, we can see that because of the corners of the ℓ1-ball, the solution β̂λ gets zero
coefficients which is not the case when regularizing with the ℓ2-norm (on the right).

β1

β2

β̂

β̂λ

β1

β2

β̂

β̂λ

Figure 8: β̂ denotes the minimizer of the empirical risk and the blue lines denote level lines of
the empirical risk [left] Regularization with a ℓ1-ball [right] Regularization with a ℓ2-ball.

6.2.2 What does the solution of the Lasso looks like?

To solve the problem of Lasso, if the objective function L : β 7→ ∥Y − Xβ∥2 + λ∥β∥1 was
differentiable, one would cancel the gradient. However, because of the ℓ1-norm the latter is not
differentiable and one needs to generalize the notion of gradient to convex functions which are
not necessarily differentiable. This is done with the following definition.

Definition 6.1 (Subdifferential). A subgradient of a convex function f : Rp → R at a point
β0 ∈ Rp is a vector z ∈ Rp such that for any β ∈ Rp the convex inequality holds

f(β)− f(β0) ⩾ z⊤(β − β0) .

The set of all subgradients of f at β0 is denoted ∂f(β0) and is called the subdifferential of f at
β0.
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The subdifferential of the ℓ1-norm is

∂∥β∥1 =
{
z ∈ [−1, 1]p s.t. for all 1 ⩽ j ⩽ p zj = sign(βj) if βj ̸= 0

}
and the subdifferential of the objective funtion of the Lasso is

∂L(β) =
{
− 2X⊤(Y −Xβ) + λz : z ∈ ∂∥β∥1

}
.

Any solution of the Lasso should cancel the subdifferential. Therefore, if β̂λ is a solution of the
Lasso, it exists ẑ ∈ ∂∥β̂λ∥1 (i.e., ẑj = sign(β̂λ(j)) if β̂λ(j) ̸= 0 and ẑj ∈ [−1, 1] otherwise) such
that

−2X⊤(Y −Xβ) + λẑ = 0 ⇒ X⊤Xβ̂λ = X⊤Y − λ

2
ẑ . (15)

If the gram matrix X⊤X is general, it is not possible to solve the later in close form. To get
some insights about the solution of the Lasso, let us assume the orthonormal setting X⊤X = Ip.
Then, from (15), we get for all j ∈ {1, . . . , p} such that β̂λ(j) ̸= 0

β̂λ(j) = X⊤
j Y − λ

2
sign(β̂λ(j)) .

Therefore, X⊤
j Y = β̂λ(j)+sign(β̂λ(j)) and β̂λ(j) have same sign and we obtain for all 1 ⩽ j ⩽ p

β̂λ(j) =

{
X⊤

j Y − λ
2 sign(X

⊤
j Y ) if |X⊤

j Y | ⩾ λ
2

0 if |X⊤
j Y | ⩽ λ

2

In the orthonormal setting, the Lasso performs thus a soft threshold of the coordinates of the
OLS.

Statistical property of the Lasso estimator For λ large enough λ ≃ σ
√
log p, under some

additional condition on the design (relaxed version of orthonormal design), it is possible to show
that the Lasso does not assign any weight to coefficients that are not in m∗. If λ is properly
chosen, it recovers exactly the coefficients of β∗ and its risk is controlled with high probability
as

R(β̂λ) =
∥∥Xβ∗ −Xβ̂λ

∥∥2 ⩽ inf
β∈Rp\{0}

{
∥Xβ −Xβ∗∥2 +□Xλ2∥β∥0

}
,

where λ2 ≃ σ2 log p and □X is the compatibility constant depending on the design X. It can
be bad for non-orthogonal design. We recover a similar result than the one obtained for model
selection in Theorem 6.2 but with □X and with an efficient procedure. It can be shown that it
is not possible to avoid □X for efficient (polynomial time) procedures.

6.2.3 Computing the Lasso estimator

Since this is the solution of a convex optimization problem, the solution of the Lasso can be
obtained efficiently. There are three main algorithms used by the community.
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Coordinate descent The idea is to repeatedly minimize the objective function L(β) with re-
spect to each coordinate. It converges thanks to the convexity of L. As we saw in Equation (15),
the solution of the Lasso satisfies

X⊤Xβ̂λ = X⊤Y − λẑ

where ẑ ∈ ∂∥β∥1. We saw that the solution equals β̂λ(j) = Sλ(X
⊤
j Y ) when X⊤X = Ip. This

equation has however no closed-form solution in general. The idea of coordinate descent is to
solve this equation only for one coordinate, fixing all the other coordinates.

Let 1 ⩽ i ⩽ n and fix coordinates βj ∈ R for j ̸= i. Solving the i-th coordinate optimisation
problem given by

min
βi

L(β) = min
βi∈R

{
1

2

∥∥Y −Xβ
∥∥2 + λ∥β∥1

}
,

we get that the i-th partial sub-derivative of L should cancel, which gives similarly to previously

X⊤
i Xβ = X⊤

i Y − λzi ,

where zi ∈ ∂|βi|. This can be rewritten as

X⊤
i Xiβi +X⊤

i X−iβ−i = X⊤
i Y − λzi ,

where X−i ∈ Rn × (p − 1) is the input matrix without column i and β−i ∈ Rp−1 is the fixed
parameter vector without coordinate i.

Assume βi ̸= 0, then zi = sign(βi) and

X⊤
i Xiβi + λ sign(βi) = X⊤

i (Y −X−iβ−i) ,

Since X⊤
i Xi > 0, we have zi = sign

(
X⊤

i (Y −X⊤
i X−iβ−i)

)
which implies

βi =
Sλ

(
X⊤

i (Y −X⊤
i X−iβ−i)

)
X⊤

i Xi
. (16)

where Sλ is the soft-threshold function:

Sλ(x) =

{
0 if |x| ⩽ λ
x− λ sign(x) otherwise .

The algorithm of coordinate descent consists in sequentially repeating the update (16) for i =
1, . . . , p, 1 . . . , p, . . . minmizing the objective function with respect to each coordinate at a time.

Fista (fast iterative shrinkage thresholding algorithmn) It uses the explicit formula in the
orthogonal design setting for computing recursively an approximation of the solution

LARS The insight of the algorithm comes from equation (15): X⊤Xβ̂λ = X⊤Y − λ
2 ẑ. We

then consider the function λ 7→ β̂λ. For non-zero coefficients, ẑj = sign(β̂λ(j)) and is constant
while λ 7→ β̂λ(j) does not change sign. Therefore, the function λ 7→ β̂λ is piecewise linear in
λ with a change when for some coordinate β̂λ(j) changes sign. LARS computes the sequence
{β̂λ1 , β̂λ2 , . . . } of the Lasso estimator corresponding to the break points of the path λ 7→ β̂λ.
At each break point, the model mλ = {i ∈ {1, . . . , p} : β̂λ(i) ̸= 0} is updated and we solve the
linear equation

X⊤
mλ

Xmλ
β̂λ(mλ) = X⊤

mλ
Y − λ

2
sign(β̂λ(m)) ,

until the next break point. This algorithm is slower than the other two algorithms but it provides
the full regularization path λ 7→ β̂λ (see Figure 9).
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Figure 9: Lasso regularization path computed with LARS

6.2.4 Final remarks and variants

Removing the bias of the Lasso The Lasso estimator β̂λ is biased. Often one might want
to remove the bias for instance by first computing β̂λ to select to good model m̂λ and then solve
the OLS or Ridge on the model m̂λ only.

No penalization of the intercept In practice, the intercept is often no penalized and the
Lasso solves

β̂λ ∈ argmin
β∈Rp

{ n∑
i=1

(Yi − β0 − β⊤Xi)
2 + λ∥β∥1

}
.

Group Lasso It is an extension when coordinates are sparse by groups. In other words, we
have some groups Gk ⊂ {1, . . . , p} and we assume that all coordinates βi for i ∈ Gk are either
all zero or all non-zero.

Elastic net It is a mix of ℓ1 and ℓ2 regularization

β̂ ∈ argmin
β∈Rp

{
∥Y −Xβ∥2 + λ1∥β∥1 + λ2∥β∥22

}
.

It also selects variables thanks to sharp corners and it is heavily used in practice.

Calibration of λ It is a crucial point in practice. A common solution is to perform K-fold
cross validation. There are a few other techniques such as the slopes heuristic.
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7 Multilayer Perceptron

Learning objectives: understand the main concepts of multilayer perceptron, given the
weights and biases for a neural net, be able to compute its output from its input. Approxima-
tion properties of shallow networks.

Neural networks are a particular approach to machine learning, inspired by the way the brain
processes information. A neural network is composed of a large number of units, each of which
performs very simple operations, but produces sophisticated behaviors as a whole. Neural net-
works are increasingly used in many applications. They are the basis for speech recognition,
translation, search result ranking, face recognition, sentiment analysis, image retrieval and many
other applications. There are powerful software packages such as Caffe, Theano, Torch, and Ten-
sorFlow, which allow us to quickly implement sophisticated learning algorithms.

7.1 Single processing unit

z...
w1

wd

b
1

x1

xd

z := ϕ
(
b+ ⟨w, x⟩

)

Figure 10: Single processing unit and its com-
ponents. The activation function is denoted by
ϕ and the output z. The vector x = (x1, . . . , xd)
represents the inputs from other units within the
network; b is called bias and represents an ex-
ternal input to the unit.

In biology, the neuron is the basic process-
ing unit of the brain. It has a large branch-
ing tree of dendrites, which receive chemi-
cal signals from other neurons at junctions
called synapses, and convert them into elec-
trical signals. In machine learning, we elim-
inate most of the complexity and use a sim-
plified model of a neuron, shown in Figure 10.
This neuron has a set of incoming connections
from other neurons, each with an associated
strength or weight. It computes a value, called
pre-activation, which is the sum of the incom-
ing signals xj multiplied by their weights wj :
b+ ⟨w, x⟩ . An additional bias (or intercept) b
determines the activation of the neuron in the
absence of inputs. The neuron then applies an activation function ϕ to form its output:

z = ϕ(b+ ⟨w, x⟩) .

Examples of activation functions include:
• the identity function ϕ(x) = x. This is used for regression y ∈ R and corresponds to

performing linear regression;
• the threshold function ϕ(x) = 1{x ⩾ 0} or the sign ϕ(x) = sign(x). This is used for

binary classification y ∈ {0, 1} or y ∈ {−1, 1}. It corresponds to binary linear classifier or
perceptron;

• the logistic sigmoid ϕ(x) = (1 + e−x)−1. This is used for binary classification and corre-
sponds to logistic regression;

• the linear rectification (ReLu) ϕ(x) = x1{x ⩾ 0};
• the hyperbolic tangent function ϕ(x) = (ex − e−x)/(ex + e−x) for binary classification.
• ramp functions,. . .

The Perceptron algorithm Consider a binary classification problem with input x ∈ Rd and
ouptut y ∈ {−1, 1}. Perceptron will make predictions of the form:

z = sign(b+ ⟨w, x⟩)
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Figure 11: Three common activation functions for neural networks.

which corresponds to the non-linear activation function ϕ(x) = sign(x). While logistic regression
provides probabilitic outputs, perceptron only provides outputs in {−1, 1}. A prediction z for a
data (x, y) makes an error if z ̸= y, which is equivalent to zy < 0. One may thus consider the
loss function

ℓ(y, z) = −yz 1{yz < 0}

which equals 1 in case of error and 0 otherwise. Similarly, Perceptron considers the loss

ℓ
(
y, (b, w)

)
= −y(b+ ⟨w, x⟩)1{y(b+ ⟨w, x⟩) < 0} .

The partial derivatives in b and w are 0 if the data is correctly classified and

∇bℓ(y, (b, w)) = −y and ∇wℓ(y, (b, w)) = −yx ,

for misclassified data. The Perceptron algorithm learns the parameters (b, w) by applying
stochastic gradient descent (without resampling) to the training data with that loss. The algo-
rithm is described in Algorithm 1.

Algorithm 1 Perceptron
Input: γ ∈ (0, 1) ▷ Learning rate
Init: b1 ← 0 and w1 ← 0
for i = 1, . . . , n do

zi ← bi + w⊤
i xi ▷ Prediction of data i

if ziyi < 0 then ▷ if the data point is misclassified
bi+1 ← bi + γyi
wi+1 = wi + γyixi

else ▷ if the data is well classified
bi+1 ← bi
wi+1 ← wi

end if
end for
Return: (bn+1, wn+1)

7.2 Multilayer perceptron

A neural network is a combination of several of these units. Each of them is very simple,
but together they can approximate complex functions. Here, we focus on feedforward neural
networks, in which the units are organized in a graph without any cycles, so that all computations
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Figure 12: Network graph of a L-layer perceptron with d input units and p output units. The
kth hidden layer contains d(k) hidden units.

can be performed sequentially. In contrast, in recurrent neural networks, the graph can have
cycles. The most basic type of feedforward network is the multilayer perceptron (MLP), shown
in Figure 12. Here, the units are organized into a set of layers. Each unit in one layer is
connected to each unit in the next layer; the network is said to be fully connected. The first
layer is the input layer, and its units take the values of the input features. The last layer is the
output layer, and it has one unit for each value that the network produces (i.e., a single unit
in the case of regression or binary classification, or p units in the case of p-class classification).
All intermediate layers are called hidden layers, because we do not know in advance what these
units are to compute, and this must be discovered during learning. The number of layers is
referred as the depth and the number of neurons within a layer as the width. Deep Learning
refers to neural nets with many hidden layers.

Denote by
• L the number of layers (the depth of the network); There are thus L−1 hidden layers and

the output layer correponds to the L-th layer of the network;
• x ∈ Rd the input vector;
• z ∈ Rp the final output.
• d(k) the dimension (number of units) of the k-th layer. Then, d(0) = d and d(L) = p;
• h(k) ∈ Rd(k) the output of the k-th hidden layer;
• W (k) ∈ Rd(k)×d(k−1) the weight matrix where each row is the weight vector of a unit of the
k-th layer;

• b(k) ∈ Rd(k) the bias vector of the k-th layer;
• ϕ(k) the activation function of the k-th layer; Note that activation functions may vary from

one layer to another;

The MLP computations may be written as:

h(1) = ϕ(1)
(
W (1)x+ b(1)

)
h(k) = ϕ(k)

(
W (k)h(k−1) + b(k)

)
∀k = 2, . . . , L− 1 (17)

z = ϕ(L)
(
W (L)h(L−1) + b(L)

)
,

where by abuse of notation ϕ(u) for a vector u ∈ Rd denotes ϕ applied to each component of u,
i.e., (ϕ(u)i = ϕ(ui). Note that the parameters of the network are all weight matrices W (k) and
bias b(k), for k = 1, . . . , L. A MLP has thus m :=

∑L
k=1 d

(k)(d(k−1) + 1) parameters: each unit
of the k-th layer has one bias parameter and d(k−1) weights.
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Matrix notation When learning the parameters of a network, one has access to learning data
{(xi, yi)}1⩽i⩽n. Similarly to linear regression, it is useful to write the above equations in matrix
form. Denote by X = (x1, . . . , xn)

⊤ ∈ Rn×d the input matrix, by H(k) ∈ Rn×d(k) the outputs of
the k-th layer for all training data points, and Z ∈ Rn×p the matrix of outputs, we can write

H(1) = ϕ(1)
(
XW (1)⊤ + 1b(1)⊤

)
H(k) = ϕ(k)

(
H(k−1)W (k)⊤ + 1b(k)⊤

)
∀k = 2, . . . , L− 1 (18)

Z = ϕ(L)
(
H(L−1)W (L)⊤ + 1b(L)⊤

)
.

These equations can be directly transposed to python librairies to efficiently compute predictions
over the whole dataset simultaneously. Note that it is hard to remember where the transpose ⊤
are. To write it properly, the best solution is to pay attention to the dimensions.

Learning MLP As we did for supervised learning, we must first choose a loss function to
evaluate performance. For regression, we can use the squared loss ℓ(y, z) = (y − z)2, while
for binary classification, we can use the logistic loss. Then, denote by θ ∈ Rm the vector of
parameters of the network (i.e., that contains all W (k)

ij and b
(k)
i ) and by fθ(x) ∈ R the prediction

z obtained by applying the network computations (17) to the input x. Then, we can write the
empirical risk of the network:

R̂(θ) = 1

n

n∑
i=1

ℓ
(
yi, fθ(xi)

)
.

The parameter vector θ is the trained through empirical risk minimization by seeking for θ̂ ∈
argminθ∈Rm R̂(θ). This is generally approximately solved by applying a (stochastic) gradient
descent type algorithm

θ̂i+1 ← θ̂i − γĝi ,

where ĝi is an estimation of ∇R̂(θ̂i). The parameter θ0 is usually initialized with small random
values distributed around zero.

Of course, many interesting aspects, which we will not have time to address in details in this
class, arise from this optimization problem. We list some below.

• In deep learning, the dimension m may be very large and computing full gradients directly
is prohibitive. This problem is somewhat solved by back-propagation that cleverly uses
chain rules to efficiently compute partial derivatives and propagate errors through the
network.

• Large parameter sizes m can also cause over-parametrisation (when m > n) and hence
overfitting problems. Therefore, similarly to linear regression, one needs to use regulariza-
tion (ℓ2-penalty, dropout, early stopping,. . . ).

• The empirical risk R̂ is generally non-convex in θ. Gradient descent has thus no theoretical
guarantee to converge to a global minimum and often yield to local minima.

7.3 Universal approximation properties

In previous lectures, we saw how to represent complex non-linear functions by using features.
For example, linear regression can represent a cubic polynomial if we use the feature map
ϕ(x) = (1, x, x2). Yet, this is not fully satisfactory because:

• The features must be specified in advance, which may require a lot of engineering work.
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• It may require a very large number of features to represent a certain set of functions; for
example, the feature representation for cubic polynomials is cubic in the number of input
features.

Kernel methods that you will see latter in this class partially solve these issues by providing rich
feature representations of the inputs.

In contrast, Multilayer Perceptron, or neural nets in general, do not require any feature transfor-
mation of the inputs and take a different approach to model complex functions. MLP connects
many simple units into a network and together these units can compute surprisingly complex
functions, when using non-linear activation functions. As it turns out, even a shallow MLP (i.e.,
with one single hidden layer) can approximate any continous function when given appropriate
weights. The site http://playground.tensorflow.org/ provides a beautiful interactive visualiza-
tion of neural networks that allows to see the role and power of hidden units.

Theorem 7.1 (Universal approximation theorem, Cybenko’89, Hornik’89). Any continuous
fonction on a compact can be approximated arbirarily well by a Multilayer Perceptron with one
hidden layer and large enough width, as soon as the activation function is not polynomial.

Note that the same theorem holds true for greater depth (by taking the same network with
one hidden layer and adding other layers that approximate the identity function). More recent
approximation theorems also hold for fixed width when making the depth goes to infinity.

△! This approximation result is a nice property but there are a few caveats.

• First, the network can be arbitrarily large. In practice, for computational and statisti-
cal purposes, compact networks (i.e., with few parameters) are desirable. This need of
compactness explains partially the success of deep learning (otherwise why would we need
deep networks if shallow MLP are enough): deep networks are often much more compact
with the same approximation power.

• Second, the weights of the network can be arbitrarily large, which can lead to large variance.
• Finally, the approximation theorem provides only the existence but not the exact values

of the weights and the training of neural networks can be sophisticated with non-convex
objective functions.

Example 7.1. Let us prove universality in the case of binary inputs: X = {−1, 1}d and arbitrary
output space Y. Let f : X → Y and let us design a shallow network that equals f . We consider
the hard-threshold ϕ(x) = 1{x ⩾ 0} as activation function for all hidden units, and the identity
function for the output unit. For any x ∈ X , we associate one hidden unit with the weight vector
w

(1)
x = x and bias bx = d− 1/2. Then, for any x′ ∈ X , we have for this unit

w⊤
x x

′ + bx ⩾ 0 iff. x′ = x ,

which yields,

h(1)x = ϕ(w(1)⊤
x x′ + bx) =

{
1 if x′ = x
0 otherwise

The highlevel idea is that each hidden unit is asked to identify one pattern in {−1, 1}d. Then, it
suffices to assign the weight w(2)

x = f(x) to relate that hidden unit to the output unit. The final
prediction of the is then for any x′ ∈ X∑

x∈X
w(1)
x ϕ(w⊤

x x
′ + bx) =

∑
x∈X

f(x)1{x = x′} = f(x′) .

Therefore, the network exactly matches the function f . Note that the depth of the network is
L = 2 and the width is |X | = 2d.
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Figure 13: Architecture of a multilayer perceptron with one hidden layer that may approximate
any function with inputs in {−1, 1}2.
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