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General information

Teachers: Julien Mairal, Pierre Gaillard, Michael Arbel

Website: https://kernel-learning.github.io/

The class will last 36 hours.

Final grade: 50% final exam, 50% homework.
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Pre-requesites

Linear algebra (matrix operations, linear systems)

Probability (e.g. notion of random variables, conditional expectation)

Basic coding skills in python for homeworks
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Rule

QUESTIONS if something is unclear
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Supervised learning Basics



Supervised learning

Goal: Given some observations (xi , yi ) ∈ X ×Y, i = 1, . . . , n

of inputs/outputs, we want to predict a new output y ∈ Y
given a new input x ∈ X .

We usually refer to training data for (xi , yi ), i = 1, . . . , n and

testing data for the unobserved data (x , y).

?
?

?

Examples:

- Inputs x ∈ X : images, sounds, video, text, proteins, sequence of DNA bases, web

pages, social network activity, sensors from industry, financial or

meteorological,. . .

In this class we will assume that X is a vector space (such as Rd )

- Outputs y ∈ Y: binary labels Y = {0, 1} or Y = {−1, 1}, multiclass classification

Y = {1, . . . ,K}, or regression Y = R.
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Why is supervised learning difficult? (1)

- The output y may not be a deterministic function of x . It is noisy.

When y ∈ R we will often make the “additive noise” assumption:

y = f (x) + ε

with zero-mean noise ε.

- The regression function f may be complex: non linear if X is a vector space or

even hard to define otherwise.

- Only few x ′s are observed:

2.1. FROM TRAINING DATA TO PREDICTIONS 23

• The label y may not be a deterministic function of x: given x ∈ X, the outputs are
noisy, that is, y is not a deterministic function of x. When y ∈ R, we will often make
the simplifying “additive noise” assumption that y = f(x) + ε with some zero-mean
noise ε, but in general we only assume that there is a conditional distribution of y
given x. This stochasticity is typically due to diverging views between labellers, or
dependence on random external unobserved quantities (that is, y = f(x, z), z random
and not observed).

• The prediction function f may be quite complex, highly non-linear when X is a vector
space, and even hard to define when X is not a vector space.

• Only a few x’s are observed: we thus need interpolation and potentially extrapolation
(see below for an illustration for X = Y = R), and therefore overfitting (predicting well
on the training data but not as well on the testing data) is always a possibility.

training data

testing data
interpolation

extrapolation

x

y

Moreover, the training observations may not be uniformly distributed in X. In this
book, they will be assumed to be random, but some analyses will rely on determinis-
tically located inputs to simplify some theoretical arguments.

• The input space X may be very large, that is, with high dimension when this is a
vector space. This leads to both computational issues (scalability) and statistical
issues (generalization to unseen data). One usually refers to this problem as the curse
of dimensionality.

• There may be a weak link between training and testing distributions. In other words,
the data at training time can have different characteristics than the data at testing
time.

• The criterion for performance is not always well defined.

May lead to overfitting.
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Why is supervised learning difficult? (2)

- The input space X may be very large → computational or statistical issues.

Curse of dimensionality.

- Difference between data at training time and testing time.

- The criterion of performance is not always well defined.
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Machine learning algorithm

Assumption: In standard supervised learning analysis, {(xi , yi )}16i6n ∈ (X × Y)n is

the realization of i.i.d. random variables.

A machine learning algorithm A is a function that goes from a dataset in (X × Y)n

to a function from X to Y:

A : (X × Y)n 7→ YX

B In some situation, the algorithm may be asked to provide a prediction in a

“decision space” Z that may differ from the output space Y.

Example: predict the probability of rain. In this case Z = [0, 1] but Y = {−1, 1}.
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Random design v.s. fixed design

Random design: both x and y are assumed random and sampled i.i.d.

Fixed design: x1, . . . , xn are assumed to be deterministic.

- either because they are indeed deterministic (regular grid of the input space)

- or because the analysis is performed conditionnally on them.

This difference will play an important role in the class on least-square regression.
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Loss function

To evaluate the performance of the algorithm, one needs to choose a loss function

depending on the problem we want to solve:

` : Y × Z 7→ R

where `(y , z) is the loss of predicting z while the true label is y .

In some communities, the loss is replaced with a utility (economics) or a reward (RL)

to be maximized.

Examples:

- binary classification: `(y , z) = 1{y 6= z} and Y = Z = {−1, 1}
- multiclass classification: `(y , z) = 1{y 6= z} and Y = Z = {1, . . . , k}
- regression: `(y , z) = (y − z)2 and Y = Z = R
- structured prediction, survival analysis, ranking,. . .

We will assume that the loss is given to us.
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Loss function: multi-objective

The loss will be used to evaluate the final performance of the algorithm.

Often a single number may not be enough to charaterize the entire prediction

behavior: multi-objective optimization

Examples:

- minimizing cost v.s. maximizing com-

fort while buying a car

- maximizing performance v.s. minimiz-

ing fuel consumption and emission of

pollutants of a vehicle

- Minimizing cost v.s. flight duration

while buying a ticket

- False positive v.s. false negative in

classification
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Expected risk

Given a loss function ` : Y × Z → R, the expected risk (or generalization error or

testing error) of a function f : X → Z is defined as

R(f ) := E
[
`(y , f (x))

]
B Pay attention to what is random:

- the expectation is taken over the randomness of (x , y) and thus R depends on its

distribution.

- if f is the output of an algorithm (i.e., that was learnt on data (xi , yi )), it is

random because of the dependence on the training data and so is R(f )

- if f is a deterministic function, R(f ) is deterministic.

- the function R is itself deterministic

- if the algorithm provides random predictions, then the expectation is also taken

over the randomness of the prediction.
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Empirical risk

The empirical risk of a function f : X → Z is its average loss over the training data:

R̂(f ) :=
1

n

n∑
i=1

`(yi , f (xi )) .

R̂ is a random function on functions because it depends on the training set.

B It is often applied on random functions that also depend on the training data.

Pay attention to the dependencies.
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Examples

In (multi-class) classification,

- the expected risk of the zero-one loss is the probability of making a mistake on

the testing data.

- the empirical risk is the proportion of mistakes on the training data

Least square regression Classification

A = Y R {1, . . . , k}

`(y , z) (y − z)2 1y−z

R(f ) E
[
(f (x)− y)2

]
P(f (x) 6= y)

R̂(f ) 1
n

∑n
i=1(f (xi )− yi )

2 1
n

∑n
i=1 1yi 6=f (xi )
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Bayes predictor and Bayes risk (1)

We would like to answer to the question:

— What is the best prediction function f if we know the distribution of (x , y)? —

Using the conditional expectation, we can rewrite the expected risk

R(f ) = E
[
`(y , f (x))

]
= Ex

[
E
[
`(y , f (x))

∣∣x]] =: Ex

[
r(f (x)|x)

]
where r(z|x) = E[`(y , z)|x] is the conditional risk of any prediction z ∈ Z given the

input x ∈ X .

To minimize R(f ), we can minimize r(f (x)|x) for all x ∈ X independently.
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Bayes predictor and Bayes risk (2)

Proposition

The expected risk is minimized at a Bayes predictor f ∗ : X → Y satisfying for all

x ∈ X
f ∗(x) ∈ argmin

z∈Y
E
[
`(y , z)|x] = argmin

z∈Y
r(z|x) .

The Bayes risk R∗ is the risk of all Bayes predictors

R∗ := Ex

[
inf
z∈Y

E
[
`(y , z)|x

] ]

The Bayes predictor is not unique but they all have the same Bayes risk. It is usually

non zero.

Excess risk: R(f )−R∗. It is always non-negative.

The goal of supervised learning is to estimate the distribution y |x to minimize the

excess risk.
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Example: Bayes risk for classification with zero-one loss

Consider binary classification Y = {0, 1} with zero-one loss `(y , z) = 1{y 6= z} .

A Bayes predictor is defined for all x ∈ X by

f ∗(x) ∈ argmin
z∈{0,1}

E
[
1{z 6= y}|x

]
= argmin

z∈{0,1}
P
(
z 6= y |x

)
= argmax

z∈{0,1}
P
(
z = y |x)

=


1 if η(x) > 1/2

0 if η(x) < 1/2

0 or 1 if η(x) = 1/2

,

where η(x) := P(y = 1|x).

Then, the Bayes risk equals

R∗ = E
[
P(f ∗(x) 6= y |x)

]
= E

[
min{η(x), 1− η(x)}

]
.
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Bayes risk for regression

Consider least-square regression with Y = Z = R and `(y , z) = (y − z)2.

A Bayes predictor is given for all x ∈ X by

f ∗(x) ∈ argmin
z∈R

E
[
(y − z)2|x

]
= argmin

z∈R

{
E
[
(y − E[y |x])2

]
+ (z − E[y |x])2

}
= E[y |x].

The Bayes risk is thus the conditional variance

R∗ = E
[
(y − E[y |x])2

]
.
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Exercise (1)

Exercise (Bayes risk for non symmetric loss)

We consider binary classification with Y = {−1, 1} with the loss function

`(y , z) =


0 if y = z ← good prediction

c− if y = −1 and z = +1 ← false positive

c+ if y = +1 and z = −1 ← false negative

.

Compute the Bayes estimator at x ∈ X and the Bayes risk as a function of E[y |x].
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Solution (1)

Let z ∈ {−1, 1}. Then, the expected loss is

E[`(y , z)|x] = c−P(y = −1|x)1{z = +1}+ c+P(y = +1|x)1{z = −1}

= c−(1− P(y = 1|x))1{z = +1}+ c+P(y = +1|x)1{z = −1}

But,

E[y |x] = P(y = 1|x)− P(y = −1|x) = 2P(y = 1|x)− 1,

which yields

P(y = 1|x) =
1 + E[y |x]

2
.

Thus,

E[`(y , z)|x] =


c−
2

(
1− E[y |x]

)
if z = +1

c+
2

(
1 + E[y |x]

)
if z = −1

The Bayes risk is the minimum of these two values and the Bayes predictor the argmin.
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Exercise (2)

Exercise (Bayes risk for absolute loss)

1. What is the Bayes predictor for regression with absolute loss

`(y , z) = |y − z| ?

2. What is the Bayes predictor for the pinball loss

`(y , z) = (τ − 1{y 6 z})(y − z) ?

prévision - observation

erreur

observation
prévision
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Solution (2)

Let p(y |x) be the density of y given x . Then,

E
[
`(y , z)|x

]
= E

[
|y − z|

∣∣x]
=

∫ z

−∞
(z − y)p(y |x)dy +

∫ +∞

z
(y − z)p(y |x)dy .

Cancelling the derivative in z yields∫ f ∗(x)

−∞
p(y |x)dy −

∫ ∞
f ∗(x)

p(y |x)dy = 0

which entails ∫ f ∗(x)

−∞
p(y |x)dy =

1

2
.

The Bayes predictor f ∗(x) = argminz∈R E
[
|y − z|

∣∣x] is the median of y |x .
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Supervised learning theory (summary)

Some data (x, y) ∈ X × Y is distributed according to a probability distribution P.

We observe training data Dn :=
{

(x1, y1), . . . , (xn, yn)
}

.

We must form prediction into a decision set A by choosing a prediction function

f : X︸︷︷︸
observation

→ A︸︷︷︸
decision

Our performance is measured by a loss function ` : A× Y → R. We define the expected risk

R(f ) := E
[
`
(
f (x), y

)]
= expected loss of f

Goal: minimize R(f ) by approaching the performance of the oracle f ∗ = argminf∈F R(f )

Least square regression Classification

A = Y R {1, . . . , k}

`(y , z) (y − z)2 1z 6=y

R(f ) E
[
(f (x)− y)2

]
P(f (x) 6= y)

f ∗ E[y |x] argmaxk P(y = k|x)
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Empirical risk minimization

Idea: estimate R(f ) thanks to the training data with the empirical risk

R̂(f ) :=
1

n

n∑
i=1

`
(
f (xi ), yi

)
︸ ︷︷ ︸

average error on training data

≈ R(f ) = E
[
`
(
f (x), y

)]
︸ ︷︷ ︸

expected error

We estimate f̂n by minimizing the empirical risk

f̂n ∈ argmin
f∈F

R̂(f ) .

Many methods are based on empirical risk minimization: ordinary least square, logistic

regression, Ridge, Lasso,. . .
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Risk decomposition

Choosing the right model: F is a set of models which needs to be properly chosen

R(f̂n)−R∗ = min
f∈F
R(f )−R∗︸ ︷︷ ︸

Approximation error

+ R(f̂n)− min
f∈F
R(f )︸ ︷︷ ︸

Estimation error

Approximation error

- Always non-negative.

- Depends on the class F but is independent of f̂n and n.

- Goes to zero when F grows and can approximate any measurable function.

- It is not random.

Estimation error

- Always non-negative.

- Depends on f̂n and thus on (xi , yi ). Thus, it is random.

- Typically decreasing with n and increasing with the compexity of F .
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Overfitting

Complexity of F

Error

Training error

Expected error

OverfittingUnderfitting

Best choice
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Overfitting: example in regression
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Training error: 0.1
Expected error: 0.08
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Overfitting: example in regression
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Cubic model: Y = aX+bX2+cX3+d
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Training error: 0.03
Expected error: 0.05
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Overfitting: example in regression
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Training error: 0.01
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Practical performance evaluation

Usually the data is split into three parts:

- training set: to train algorithms and estimate parameters

- validation set: to estimate hyper-parameters

- testing set: to evaluate the final performance

B The test set can only be used once at the very end!
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Practical performance evaluation: Cross-validation

Cross-validation:

- randomly break data into K groups

- for each group, use it as a test set and train the data on the (K − 1) other groups

We choose the parameter with the smallest average error on the test sets.

only 1/K of the data lost for training

K times more expensive

In practice: choose K ≈ 10.
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Measures of performance: Expected error

We recall that an algorithm A is a function that takes a dataset

Dn = {(xi , yi )}16i6n ∈ (X × Y)n and return a function from X to Z. Its performance

is measured by its expected risk:

R(A(Dn)) = E
[
`(y ,A(Dn)(x))

∣∣Dn

]
,

where the expectation is taken over (x , y).
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Measures of performance: Expected error

We recall that an algorithm A is a function that takes a dataset

Dn = {(xi , yi )}16i6n ∈ (X × Y)n and return a function from X to Z. Its performance

is measured by its expected risk:

R(A(Dn)) = E
[
`(y ,A(Dn)(x))

∣∣Dn

]
,

where the expectation is taken over (x , y).

B The risk of an algorithm R(A(Dn)) is random because it depends on Dn, which

is itself random.
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Measures of performance: Expected error

We recall that an algorithm A is a function that takes a dataset

Dn = {(xi , yi )}16i6n ∈ (X × Y)n and return a function from X to Z. Its performance

is measured by its expected risk:

R(A(Dn)) = E
[
`(y ,A(Dn)(x))

∣∣Dn

]
,

where the expectation is taken over (x , y).

B The risk of an algorithm R(A(Dn)) is random because it depends on Dn, which

is itself random.

Expected error

E
[
R(A(Dn))

]
= E

[
`
(
y ,A(Dn)(x)

)]
,

where the expectation is taken over (x , y) and Dn.
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Measures of performance: Expected error

We recall that an algorithm A is a function that takes a dataset

Dn = {(xi , yi )}16i6n ∈ (X × Y)n and return a function from X to Z. Its performance

is measured by its expected risk:

R(A(Dn)) = E
[
`(y ,A(Dn)(x))

∣∣Dn

]
,

where the expectation is taken over (x , y).

B The risk of an algorithm R(A(Dn)) is random because it depends on Dn, which

is itself random.

Expected error

E
[
R(A(Dn))

]
= E

[
`
(
y ,A(Dn)(x)

)]
,

where the expectation is taken over (x , y) and Dn.

Consistency in expectation: E
[
R(A(Dn))

]
→R∗ as n→∞.
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Measures of performance: Probably Approximately Correct (PAC)

PAC Learning

For some δ ∈ (0, 1) and ε > 0

P
(
R(A(Dn))−R∗ 6 ε

)
> 1− δ

The goal is to find ε as small as possible as a function of δ.
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Universal Consistency

Universal consistency

An algorithm is called universally consistent if it is consistent in expectation

E
[
R(Dn)

]
→R∗

for all distributions of (x , y) and (xi , yi ).

We will see some methods that are universally consistent in this class.
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No free lunch theorem

There exists no universal learning algorithm that would outperform all other

algorithms on all possible tasks:

- without assumptions, learning can be arbi-

trarily slow

- the optimal learning algorithm is always

task-dependent

- for every algorithm, one can find task on

which is performs well and task for which it

perfoms poorly.

Which method is the best on the following example?

33



No free lunch theorem

There exists no universal learning algorithm that would outperform all other

algorithms on all possible tasks:

- without assumptions, learning can be arbi-

trarily slow

- the optimal learning algorithm is always

task-dependent

- for every algorithm, one can find task on

which is performs well and task for which it

perfoms poorly.

Which method is the best on the following example? It depends on the distribution!
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Next class

We will study linear regression which dates back to Gauss and Legendre around 1800!

It minimizes the empirical risk

1

n

n∑
i=1

(
yi − 〈θ, xi 〉

)2

But still very important nowadays in particular to understand kernel methods.
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